5.7 PROJECT

USING NEWTON'S LAW OF COOLING TO AVOID COFFEE BURNS

Newton's Law of Cooling gives the temperature of an object (such as a pan or a cup of liquid) as it cools over time to the temperature of its surrounding environment (such as the air in a room). The law can be described with the following function.

$$T(t) = T_e + (T_0 - T_e)e^{-kt}$$

In this function, T(t) is the temperature of the object at time t, in minutes. The value T_e represents the temperature of the surrounding environment, T_0 represents the initial temperature of the object, and k is a constant of variation, which depends on the object.

When brewing coffee, the ideal water temperature is between 195 and 205 degrees Fahrenheit. Suppose some freshly brewed 205 °F coffee was poured into a ceramic mug with no lid and left in a 73 °F room. Five minutes after being poured, the coffee is 161.9 °F. The constant of variation can be calculated as k = 0.079.

- 1. Use the given information to create a function for the temperature of the coffee as it cools over time.
- **2.** Use the function from part 1 to calculate the temperature of the coffee at the time intervals stated in the following table. Round the temperatures of the coffee to the nearest tenth of a degree.

Time (minutes)	Temperature of Coffee (°F)	Time (minutes)	Temperature of Coffee (°F)
0		5	
1		6	
2		7	
3		8	
4		9	

- **3.** Does the calculated value match the recorded value after 5 minutes? Explain why it does or does not match.
- **4.** What is the lowest temperature that the coffee can reach in these conditions? Explain your reasoning.

According to the University of Wisconsin–Madison, hot liquids can cause third-degree burns at the following exposure periods and temperatures: 5 seconds at 140 °F, 2 seconds at 149 °F, and 1 second at 156 °F.

- 5. After how many minutes is the coffee safe to drink? Explain your reasoning.
- **6.** A study of 300 participants showed that the preferred drinking temperature of coffee is between 125 °F and 165 °F. According to the table in part 2, when does the temperature of the coffee enter this preferred interval?
- 7. The same study determined that the optimal drinking temperature is approximately 136 °F. When is the coffee at that optimal temperature?
- **8.** If a lid were added to the mug, would that change the cooling rate of the liquid? Explain your reasoning.