Geometry

P = Perimeter, A = Area, C = Circumference, V = Volume, SA = Surface Area

Perimeter and Area

Rectang	le
P = 2l + 2	w

Square
$$P = 4s$$

Triangle
$$P = a + b + c$$

Parallelogram
$$P = 2a + 2b$$

Trapezoid
$$P = a + b + c + d$$

Circle
$$C = 2\pi r = \pi d$$

$$P = 2l + 2v$$
$$A = lw$$

$$A = s^2$$

$$A = \frac{1}{2}bh$$

$$A = bh$$

$$A = \frac{1}{2}h(b+c)$$

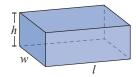
$$A = \pi r^2$$

Volume and Surface Area

Rectangular Solid

Rectangular Pyramid

$$V = lwh$$
$$SA = 2lw + 2wh + 2lh$$


$$V = \frac{1}{3}lwh$$

$$V = \frac{1}{3}\pi r^2 h$$

$$V = \pi r^2 h$$

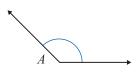
$$SA = 2\pi r^2 + 2\pi r h$$

$$V = \frac{4}{3}\pi r^3$$
$$SA = 4\pi r^2$$

Angles Classified by Measure

Acute

$$0^{\circ} < m \angle A < 90^{\circ}$$

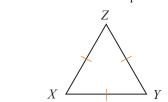


Right

Obtuse

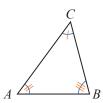
Straight
$$m\angle A = 180^{\circ}$$

Triangles Classified by Sides


Scalene

No two sides have equal lengths.

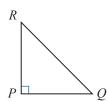
Equilateral


All three sides have equal lengths.

Triangles Classified by Angles

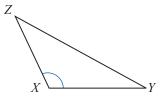
Acute

All three angles are acute.



Right

Isosceles


At least two sides have equal lengths.

One angle is a right angle.

Obtuse

One angle is obtuse.

US Customary System

of Measurement

Length

12 inches (in.) = 1 foot (ft)

36 inches = 1 yard (yd)

3 feet = 1 yard

5280 feet = 1 mile (mi)

Capacity

8 fluid ounces (fl oz) = 1 cup (c)

2 cups = 1 pint (pt) = 16 fluid ounces

2 pints = 1 quart (qt)

4 quarts = 1 gallon (gal)

Weight

16 ounces (oz) = 1 pound (lb)

2000 pounds = 1 ton (T)

Time

60 seconds (sec) = 1 minute (min)

60 minutes = 1 hour (hr)

24 hours = 1 day

7 days = 1 week

Temperature

Celsius (C) to Fahrenheit (F)

$$F = \frac{9C}{5} + 32$$

Fahrenheit (F) to Celsius (C)

$$C = \frac{5(F - 32)}{9}$$

Metric System of Measurement

Length

1 millimeter (mm) = 0.001 meter 1 m = 1000 mm

= 0.01 meter1 centimeter (cm)

1 m = 100 cm

= 0.1 meter 1 decimeter (dm)

1 m = 10 dm

1 meter (m) = 1.0 meter

1 dekameter (dam) = 10 meters 1 cm = 10 mm

= 100 meters1 hectometer (hm)

1 kilometer (km) = 1000 meters

Capacity (Liquid Volume)

1 milliliter (mL) $= 0.001 \, \text{liter}$ $1 L = 1000 \, \text{mL}$

1 liter (L)

1 hectoliter (hL)

1 kiloliter (kL)

= 1.0 liter

= 100 liters

1000 liters

1 kL = 10 hL

Weight

1 milligram (mg) = 0.001 gram 1 g = 1000 mg

1 centigram (cg) 1 decigram (dg)

= 0.01 gram= 0.1 gram

1 gram (g)

1.0 gram

= 10 grams

1 dekagram (dag) 1 hectogram (hg)

= 100 grams

1 g = 0.001 kg

1 kilogram (kg) 1 metric ton (t)

= 1000 grams = 1000 kilograms

1 kg = 0.001 t

1 t = 1000 kg = 1,000,000 g = 1,000,000,000 mg

Land Area

1 are (a) = 100 m^2

1 hectare (ha) = $100 \text{ a} = 10\ 000 \text{ m}^2$

US Customary and Metric Equivalents

Length

1 in. = 2.54 cm (exact) $1 \text{ cm} \approx 0.394 \text{ in}.$ $1 \text{ ft} \approx 0.305 \text{ m}$

 $1 \text{ yd} \approx 0.914 \text{ m}$

 $1 \text{ m} \approx 3.28 \text{ ft}$

 $1 \text{ mi} \approx 1.61 \text{ km}$

 $1 \text{ m} \approx 1.09 \text{ yd}$ $1 \text{ km} \approx 0.62 \text{ mi}$

Area

 $1 \text{ in.}^2 \approx 6.45 \text{ cm}^2$ $1 \text{ cm}^2 \approx 0.155 \text{ in.}^2$ $1 \text{ ft}^2 \approx 0.093 \text{ m}^2$ $1 \text{ m}^2 \approx 10.764 \text{ ft}^2$

 $1 \text{ yd}^2 \approx 0.836 \text{ m}^2$

 $1 \text{ m}^2 \approx 1.196 \text{ yd}^2$

 $1 \text{ acre} \approx 0.405 \text{ ha}$ 1 ha ≈ 2.47 acres

Volume

 $1 \text{ gt} \approx 0.946 \text{ L}$

 $1 L \approx 1.06 qt$

 $1 \text{ gal} \approx 3.785 \text{ L}$

 $1 L \approx 0.264 \text{ gal}$

Mass

 $1 \text{ oz} \approx 28.35 \text{ g}$

 $1 g \approx 0.035 \text{ oz}$

 $1 \text{ lb} \approx 0.454 \text{ kg}$

 $1 \text{ kg} \approx 2.205 \text{ lb}$

Notation and Terminology

Exponents

$$\underbrace{a \cdot a \cdot a \cdot a \cdot a \cdot \dots \cdot a}_{n \text{ factors}} = a_n^n$$
 base

Fractions

$$\frac{a}{b} \leftarrow \frac{\text{numerator}}{\text{denominator}}$$

Least Common Multiple (LCM)

Given a set of counting numbers, the smallest number that is a multiple of each of these numbers.

Ratios

$$\frac{a}{b}$$
 or $a:b$ or $a ext{ to } b$

A comparison of two quantities by division.

Proportions

$$\frac{a}{b} = \frac{c}{d}$$
 A statement that two ratios are equal.

Greatest Common Factor (GCF)

Given a set of integers, the largest integer that is a factor (or divisor) of all of the integers.

Types of Numbers

Natural Numbers (Counting Numbers):

$$\mathbb{N} = \{1, 2, 3, 4, 5, 6, \dots\}$$

Whole Numbers: $W = \{0, 1, 2, 3, 4, 5, 6, ...\}$

Integers: $\mathbb{Z} = \{..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$

Rational Numbers: A number that can be written in the

form $\frac{a}{b}$ where a and b are integers and $b \neq 0$.

Irrational Numbers: A number that can be written as an infinite nonrepeating decimal.

Real Numbers: All rational and irrational numbers.

Complex Numbers: All real numbers and the even roots of negative numbers. The standard form of a complex number is a + bi, where a and b are real numbers, a is called the real part and b is called the imaginary part.

Absolute Value

|a| The distance a real number a is from 0.

Equality and Inequality Symbols

- = "is equal to"
- ≠ "is not equal to"
- < "is less than"
- > "is greater than"
- ≤ "is less than or equal to"
- ≥ "is greater than or equal to"

Sets

The **empty set** or **null set** (symbolized \varnothing or $\{\ \}$): A set with no elements.

The **union** of two (or more) sets (symbolized \cup): The set of all elements that belong to either one set or the other set or to both sets.

The **intersection** of two (or more) sets (symbolized \cap): The set of all elements that belong to both sets.

The word **or** is used to indicate union and the word **and** is used to indicate intersection.

Algebraic and Interval Notation for Intervals

Type of Interval	Algebraic Notation	Interval Notation	Graph
Open Interval	a < x < b	(a,b)	$\stackrel{\longleftarrow}{a} \stackrel{\longleftarrow}{b}$
Closed Interval	$a \le x \le b$	[a,b]	$a \qquad b$
Half-Open Interval	$\begin{cases} a \le x < b \\ a < x \le b \end{cases}$	$\begin{bmatrix} a, b \end{pmatrix}$ $\begin{bmatrix} a, b \end{bmatrix}$	$ \begin{array}{cccc} & & & & \\ & a & & b \\ & & & & \\ & a & & b \end{array} $
Open Interval	$\begin{cases} x > a \\ x < b \end{cases}$	(a, ∞) $(-\infty, b)$	a b
Half-Open Interval	$\begin{cases} x \ge a \\ x \le b \end{cases}$	$\begin{bmatrix} a, \infty \\ (-\infty, b \end{bmatrix}$	a b

Radicals

The symbol $\sqrt{\ }$ is called a **radical sign**.

The number under the radical sign is called the **radicand**.

The complete expression, such as $\sqrt{64}$, is called a radical or radical expression.

In a cube root expression $\sqrt[3]{a}$, the number 3 is called the index. In a square root expression such as \sqrt{a} , the index is understood to be 2 and is not written.

The Imaginary Number i

$$i = \sqrt{-1}$$
 and $i^2 = (\sqrt{-1})^2 = -1$

Formulas and Theorems

Percent

$$\frac{P}{100} = \frac{A}{B}$$
 (the percent proportion),

where

P% = percent (written as the ratio $\frac{P}{100}$)

B =base (number we are finding the percent of)

A = amount (a part of the base)

 $R \cdot B = A$ (the basic percent equation), where

R = rate or percent (as a decimal or fraction)

B =base (number we are finding the percent of)

A = amount (a part of the base)

Profit

Profit: The difference between selling price and cost.

Profit = Selling Price - Cost

Percent of Profit:

- 1. Percent of profit based on cost: $\frac{Profit}{Cost}$
- 2. Percent of profit based on selling price: $\frac{Profit}{Selling Price}$

Interest

Simple Interest: $I = P \cdot r \cdot t$

Compound Interest: $A = P \left(1 + \frac{r}{n} \right)^{nt}$

Continuously Compounded Interest: $A = Pe^{rt}$

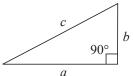
where

I = interest (earned or paid)

A = amount accumulated

P = principal (the amount invested or borrowed)

r = annual interest rate in decimal or fraction form


t = time (years or fraction of a year)

n = number of compounding periods in 1 year

e = 2.718281828459...

The Pythagorean Theorem

In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the two legs. $c^2 = a^2 + b^2$

Probability of an Event

probability of an event

 $= \frac{\text{number of outcomes in event}}{\text{number of outcomes in sample space}}$

Distance-Rate-Time

d = rt The **distance traveled** d equals the product of the rate of speed r and the time t.

Special Products

- 1. $x^2 a^2 = (x + a)(x a)$ Difference of two squares
- 2. $x^2 + 2ax + a^2 = (x + a)^2$ Square of a binomial sum
- 3. $x^2 2ax + a^2 = (x a)^2$ Square of a binomial difference
- **4.** $x^3 + a^3 = (x+a)(x^2 ax + a^2)$ Sum of two cubes
- 5. $x^3 a^3 = (x a)(x^2 + ax + a^2)$ Difference of two cubes

Change-of-Base Formula for Logarithms

For a, b, x > 0 and $a, b \ne 1$, $\log_b x = \frac{\log_a x}{\log_a b}$.

Distance Between Two Points

The distance d between points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.

Midpoint Formula

The midpoint between points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.

Principles and Properties

Properties of Addition and Multiplication

Property	Addition	Multiplication
Commutative Property	a+b=b+a	ab = ba
Associative Property	(a+b)+c=a+(b+c)	a(bc) = (ab)c
Identity	a+0=0+a=a	$a \cdot 1 = 1 \cdot a = a$
Inverse	$a + \left(-a\right) = 0$	$a \cdot \frac{1}{a} = 1 \left(a \neq 0 \right)$

Zero-Factor Law: $a \cdot 0 = 0 \cdot a = 0$

Distributive Property: $a(b+c) = a \cdot b + a \cdot c$

Addition (or Subtraction) Principle of Equality

A = B, A + C = B + C, and A - C = B - C have the same solutions (where A, B, and C are algebraic expressions).

Multiplication (or Division) Principle of Equality

A = B, AC = BC, and $\frac{A}{C} = \frac{B}{C}$ have the same solutions (where A and B are algebraic expressions and C is any nonzero constant, $C \neq 0$).

Properties of Exponents

For nonzero real numbers a and b and integers m and n:

 $a = a^1$ The exponent 1

 $a^{0} = 1$ The exponent 0

 $a^m \cdot a^n = a^{m+n}$ The product rule

 $\frac{a^m}{a^n} = a^{m-n}$ The quotient rule

 $a^{-n} = \frac{1}{n}$ Negative exponents

 $\left(a^{m}\right)^{n}=a^{mn}$ Power rule

 $(ab)^n = a^n b^n$ Power of a product

 $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ Power of a quotient

Zero-Factor Law

If a and b are real numbers, and $a \cdot b = 0$, then a = 0 or b = 0or both.

Properties of Rational Numbers (or Fractions)

If $\frac{P}{Q}$ is a rational expression and P, Q, R, and K are polynomials where $Q, R, S, K \neq 0$, then

 $\frac{P}{O} = \frac{P \cdot K}{O \cdot K}$ The Fundamental Principle

 $\frac{P}{Q} \cdot \frac{R}{S} = \frac{P \cdot R}{Q \cdot S}$ Multiplication

 $\frac{P}{Q} \div \frac{R}{S} = \frac{P}{Q} \cdot \frac{S}{R}$ **Division**

 $\frac{P}{O} + \frac{R}{O} = \frac{P+R}{O}$ Addition

 $\frac{P}{Q} - \frac{R}{Q} = \frac{P - R}{Q}$ **Subtraction**

Properties of Radicals

If a and b are positive real numbers, n is a positive integer, mis any integer, and $\sqrt[n]{a}$ is a real number then

1. $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ **4.** $a^{\frac{m}{n}} = \left(a^{\frac{1}{n}}\right)^m = \left(a^m\right)^{\frac{1}{n}}$

2. $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ $a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}$

3. $\sqrt[n]{a} = a^{\frac{1}{n}}$

Properties of Logarithms

For b > 0, $b \ne 1$, x, y > 0, and any real number r,

1. $\log_b 1 = 0$ 3. $x = b^{\log_b x}$

2. $\log_b b = 1$ **4.** $\log_b b^x = x$

5. $\log_b xy = \log_b x + \log_b y$ The product rule

6. $\log_b \frac{x}{v} = \log_b x - \log_b y$ The quotient rule

 $7. \quad \log_b x^r = r \cdot \log_b x$

The power rule

Properties of Equations with Exponents and Logarithms

For $b > 0, b \ne 1$,

1. If $b^x = b^y$, then x = y.

2. If x = y, then $b^x = b^y$.

3. If $\log_{b} x = \log_{b} y$, then x = y (x > 0 and y > 0).

4. If x = y, then $\log_b x = \log_b y$ (x > 0 and y > 0).

Equations and Inequalities

Linear Equation in *x* (First-Degree Equation in *x*)

ax + b = c, where a, b, and c are real numbers and $a \neq 0$.

Types of Equations and their Solutions

Conditional: Finite Number of Solutions **Identity:** Infinite Number of Solutions

Contradiction: No Solution

Linear Inequalities

Linear inequalities have the following forms where a, b, and c are real numbers and $a \neq 0$:

$$ax + b < c$$
 and $ax + b \le c$
 $ax + b > c$ and $ax + b \ge c$

Compound Inequalities

The inequalities c < ax + b < d and $c \le ax + b \le d$ are called **compound linear inequalities**.

(This includes $c < ax + b \le d$ and $c \le ax + b < d$ as well.)

Absolute Value Equations

For statements 1 and 2, c > 0:

1. If
$$|x| = c$$
, then $x = c$ or $x = -c$.

2. If
$$|ax + b| = c$$
, then $ax + b = c$ or $ax + b = -c$.

3. If
$$|a| = |b|$$
, then either $a = b$ or $a = -b$.

4. If
$$|ax+b| = |cx+d|$$
, then either $ax+b=cx+d$ or $ax+b=-(cx+d)$.

Absolute Value Inequalities

For c > 0:

1. If
$$|x| < c$$
, then $-c < x < c$.

2. If
$$|ax + b| < c$$
, then $-c < ax + b < c$.

3. If
$$|x| > c$$
, then $x < -c$ or $x > c$.

4. If
$$|ax + b| > c$$
, then $ax + b < -c$ **or** $ax + b > c$.

(These statements hold true for \leq and \geq as well.)

Quadratic Equation

An equation that can be written in the form $ax^2 + bx + c = 0$, where a, b, and c are real numbers and $a \ne 0$.

Quadratic Formula

The solutions of the general quadratic equation

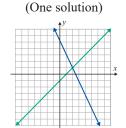
$$ax^{2} + bx + c = 0$$
, where $a \neq 0$, are $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$.

The Discriminant

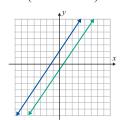
The expression $b^2 - 4ac$, the part of the quadratic formula that lies under the radical sign, is called the **discriminant**.

If $b^2 - 4ac > 0$, there are two real solutions.

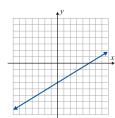
If
$$b^2 - 4ac = 0$$
, there is one real solution, $x = -\frac{b}{2a}$.


If $b^2 - 4ac < 0$, there are two nonreal solutions.

Systems of Linear Equations


Systems of Linear Equations (Two Variables)

The system is...


consistent, and the equations are **independent**.

inconsistent, and the equations are independent.
(No solution)

consistent, and the equations are **dependent**. (Infinite number of solutions)

Functions

Function, Relation, Domain, and Range

A relation is a set of ordered pairs of real numbers.

The domain D of a relation is the set of all first coordinates in the relation.

The range R of a relation is the set of all second coordinates

A function is a relation in which each domain element has exactly one corresponding range element.

One-to-One Functions

A function is a one-to-one function if for each value of y in the range there is only one corresponding value of x in the domain.

Algebraic Operations with Functions

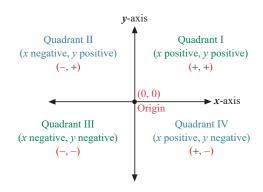
1.
$$(f+g)(x) = f(x) + g(x)$$
 4. $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}$

$$4. \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

2.
$$(f-g)(x) = f(x) - g(x)$$
 5. $(f \circ g)(x) = f(g(x))$

$$\mathbf{5.} \ (f \circ g)(x) = f(g(x))$$

3.
$$(f \cdot g)(x) = f(x) \cdot g(x)$$


Inverse Functions

If f is a one-to-one function with ordered pairs of the form (x, y), then its inverse function, denoted as f^{-1} , is also a one-to-one function with ordered pairs of the form (y, x).

If f and g are one-to-one functions and f(g(x)) = x for all $x \text{ in } D_g \text{ and } g(f(x)) = x \text{ for all } x \text{ in } D_f, \text{ then } f \text{ and } g \text{ are}$ inverse functions.

Graphs of Functions

The Cartesian Coordinate System

Linear Functions (Lines)

Standard form:

Ax + By = CWhere A and B do not both equal 0

Slope of a line:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 Where $x_1 \neq x_2$

Slope-intercept form:

$$y = mx + b$$
 With slope m and y-intercept (0, b)

Point-slope form:

$$y - y_1 = m(x - x_1)$$
 With slope m and point (x_1, y_1) on the line

Horizontal line, slope 0: y = b

Vertical line, undefined slope: x = a

Parallel lines have the same slope.

Perpendicular lines have slopes that are negative reciprocals of each other.

Quadratic Functions (Parabolas)

Parabolas of the form $y = ax^2 + bx + c$:

1. Vertex:
$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$
.

2. Line of Symmetry:
$$x = -\frac{b}{2a}$$

Parabolas of the form

$$y = a(x-h)^2 + k$$
:

- 1. Vertex: (h, k)
- 2. Line of Symmetry: x = h
- 3. The graph is a horizontal shift of h units and a vertical shift of k units of the graph of $y = ax^2$.

In both cases:

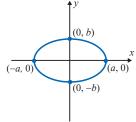
- 1. If a > 0, the parabola "opens upward."
- 2. If a < 0, the parabola "opens downward."

Conic Sections

Equations of a Horizontal Parabola

 $x = ay^2 + by + c$ or $x = a(y-k)^2 + h$ where $a \ne 0$.

The parabola opens left if a < 0 and right if a > 0.


The vertex is at (h, k).

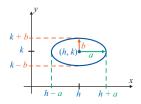
The line y = k is the line of symmetry.

Equation of an Ellipse

The standard form for the equation of an ellipse with its center at the origin is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

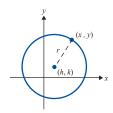
The points (a, 0) and (-a, 0) are the *x*-intercepts (called vertices).

The points (0, b) and (0, -b) are the *y*-intercepts (called vertices).


When $a^2 > b^2$:

- The segment of length 2*a* joining the *x*-intercepts is called the major axis.
- The segment of length 2b joining the y-intercepts is called the minor axis.

When $b^2 > a^2$:


- The segment of length 2b joining the y-intercepts is called the major axis.
- The segment of length 2a joining the x-intercepts is called the minor axis.

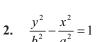
The standard form for the equation of an ellipse with its center at (h, k) is $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$.

Equation of a Circle

The equation of a circle with radius r and center (h, k) is $(x-h)^2 + (y-k)^2 = r^2$.

Equation of a Hyperbola

In general, there are two standard forms for equations of hyperbolas with their centers at the origin.

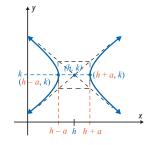

1.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

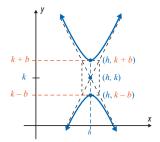
x-intercepts (vertices) at (a, 0) and (-a, 0)

No *y*-intercepts

The curves "open" left and right.

y-intercepts (vertices) at (0, b) and (0, -b)


No *x*-intercepts


Asymptotes:
$$y = \frac{b}{a}x$$
 and $y = -\frac{b}{a}x$

The curves "open" up and down.

The equation of a hyperbola with its center at (h, k) is

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \text{ or } \frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1.$$

