


Suppose you have a piece of cardboard with a length of 32 inches and a width of 20 inches and you want to use it to create a box. You would need to cut a square out of each corner of the cardboard so that you can fold the edges up. But what size squares should you cut? Cutting four small squares will make a shorter box. Cutting four large squares will make a taller box.

- 1. Since we haven't determined the size of the square to cut from each corner, let the side length of the square be represented by the variable x. Write a simplified polynomial expression in x and note the degree of the polynomial for each of the following geometric concepts.
 - a. The length of the base of the box once the corners are cut out
 - **b.** The width of the base of the box once the corners are cut out
 - **c.** The height of the box
 - **d.** The perimeter of the base of the box
 - e. The area of the base of the box
 - **f.** The volume of the box
- **2.** Evaluate the volume expression for the following values of *x*. (Be sure to include the units of measurement.)
 - **a.** x = 1 in.
 - **b.** x = 2 in.
 - **c.** x = 3 in.
 - **d.** x = 3.5 in.
 - **e.** x = 6 in.
 - **f.** x = 7 in.

- **3.** Based on your volume calculations for the different values of *x* in Problem 2, if you were trying to maximize the volume of the box, between what two values of *x* do you think the maximum will be?
- **4.** Using trial and error, see if you can determine the side length *x* of the square that maximizes the volume of the box. (**Hint:** It will be a value in the interval from Problem 3.)
- **5.** Using the value you found for *x* in Problem 4, determine the dimensions of the box that maximize its volume.
- **6.** Calculate the volume of the box in Problem 5.