1163

Exponents

$$\underbrace{a \cdot a \cdot a \cdot a \cdot a \cdot \dots \cdot a}_{n \text{ factors}} = a^{n}$$
 exponent

Fractions

$$\frac{a}{b}$$
 \longleftarrow $\frac{\text{numerator}}{\text{denominator}}$

Least Common Multiple (LCM)

Given a set of counting numbers, the smallest number that is a multiple of each of these numbers.

Greatest Common Factor (GCF)

Given a set of integers, the largest integer that is a factor (or divisor) of all of the integers.

Types of Numbers

Natural Numbers (Counting Numbers):

$$\mathbb{N} = \{1, 2, 3, 4, 5, 6, \dots\}$$

Whole Numbers:
$$W = \{0, 1, 2, 3, 4, 5, 6, ...\}$$

Integers:
$$\mathbb{Z} = \{..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$$

Rational Numbers: A number that can be written in the

form $\frac{a}{b}$ where a and b are integers and $b \neq 0$.

Irrational Numbers: A number that can be written as an infinite nonrepeating decimal.

Real Numbers: All rational and irrational numbers.

Complex Numbers: All real numbers and the even roots of negative numbers. The standard form of a complex number is a + bi, where a and b are real numbers, a is called the real part and b is called the imaginary part.

Absolute Value

|a| The distance a real number a is from 0.

Equality and Inequality Symbols

- = "is equal to"
- ≠ "is not equal to"
- < "is less than"
- > "is greater than"
- ≤ "is less than or equal to"
- ≥ "is greater than or equal to"

Algebraic and Interval Notation for Intervals

Type of Interval	Algebraic Notation	Interval Notation	Graph	
Open Interval	a < x < b	(a,b)	\overrightarrow{a} \overrightarrow{b}	
Closed Interval	$a \le x \le b$	[a,b]	a b	
Half-Open Interval	$\begin{cases} a \le x < b \\ a < x \le b \end{cases}$	$\begin{bmatrix} a, b \end{pmatrix}$ $\begin{bmatrix} a, b \end{bmatrix}$	$ \begin{array}{ccc} & & & \\ & a & & b \\ & & & \\ & a & & b \end{array} $	
Open Interval	$\begin{cases} x > a \\ x < b \end{cases}$	(a,∞) $(-\infty,b)$		
Half-Open Interval	$\begin{cases} x \ge a \\ x \le b \end{cases}$	$\begin{bmatrix} a, \infty \\ (-\infty, b \end{bmatrix}$		

Radicals

The symbol $\sqrt{\ }$ is called a **radical sign**.

The number under the radical sign is called the **radicand**.

The complete expression, such as $\sqrt{64}$, is called a radical or radical expression.

In a cube root expression $\sqrt[3]{a}$, the number 3 is called the index. In a square root expression such as \sqrt{a} , the index is understood to be 2 and is not written.

The Imaginary Number i

$$i = \sqrt{-1}$$
 and $i^2 = (\sqrt{-1})^2 = -1$

n Factorial (n!)

For any positive integer n, the factorial of n, denoted as n!, is the product of all positive integers from n through 1.

$$n! = n(n-1)(n-2)\cdots(3)(2)(1)$$

Principles and Properties

Properties of Addition and Multiplication

Property	Addition	Multiplication	
Commutative Property	a+b=b+a	ab = ba	
Associative Property	(a+b)+c=a+(b+c)	a(bc) = (ab)c	
Identity	a + 0 = 0 + a = a	$a \cdot 1 = 1 \cdot a = a$	
Inverse	$a + \left(-a\right) = 0$	$a \cdot \frac{1}{a} = 1 \left(a \neq 0 \right)$	

Zero-Factor Law: $a \cdot 0 = 0 \cdot a = 0$

Distributive Property: $a(b+c) = a \cdot b + a \cdot c$

Addition (or Subtraction) Principle of Equality

A = B, A + C = B + C, and A - C = B - C have the same solutions (where A, B, and C are algebraic expressions).

Multiplication (or Division) Principle of Equality

A = B, AC = BC, and $\frac{A}{C} = \frac{B}{C}$ have the same solutions

(where A and B are algebraic expressions and C is any nonzero constant, $C \neq 0$).

Properties of Exponents

For nonzero real numbers a and b and integers m and n:

The exponent 1 $a = a^1$

 $a^{0} = 1$ The exponent 0

 $a^m \cdot a^n = a^{m+n}$ The product rule

 $\frac{a^m}{a^n} = a^{m-n}$ The quotient rule

 $a^{-n} = \frac{1}{a^n}$ Negative exponents

 $\left(a^{m}\right)^{n}=a^{mn}$ Power rule

 $(ab)^n = a^n b^n$ Power of a product

 $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ Power of a quotient

Zero-Factor Law

If a and b are real numbers, and $a \cdot b = 0$, then a = 0 or b = 0or both.

Properties of Rational Expressions (or Numbers)

If $\frac{P}{Q}$ is a rational expression and P, Q, R, S, and K are polynomials where $Q, R, S, K \neq 0$, then

 $\frac{P}{O} = \frac{P \cdot K}{O \cdot K}$ The Fundamental Principle

 $\frac{P}{O} \cdot \frac{R}{S} = \frac{P \cdot R}{O \cdot S}$ Multiplication

 $\frac{P}{Q} \div \frac{R}{S} = \frac{P}{Q} \cdot \frac{S}{R}$ Division

 $\frac{P}{O} + \frac{R}{O} = \frac{P+R}{O}$ Addition

 $\frac{P}{O} - \frac{R}{O} = \frac{P - R}{O}$ **Subtraction**

Properties of Radicals

If a and b are positive real numbers, n is a positive integer, mis any integer, and $\sqrt[n]{a}$ is a real number then

1. $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ 4. $a^{\frac{m}{n}} = \left(a^{\frac{1}{n}}\right)^m = \left(a^m\right)^{\frac{1}{n}}$

2. $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ $a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^{m} = \sqrt[n]{a^{m}}$

 $\sqrt[n]{a} = a^{\frac{1}{n}}$

Properties of Logarithms

For b > 0, $b \ne 1$, x, y > 0, and any real number r,

1. $\log_b 1 = 0$

 $3. x = b^{\log_b x}$

2. $\log_b b = 1$ **4.** $\log_b b^x = x$

5. $\log_b xy = \log_b x + \log_b y$ The product rule

6. $\log_b \frac{x}{y} = \log_b x - \log_b y$ The quotient rule

7. $\log_b x^r = r \cdot \log_b x$

The power rule

Properties of Equations with Exponents and Logarithms

For b > 0, $b \ne 1$,

1. If $b^x = b^y$, then x = y.

2. If x = y, then $b^x = b^y$.

3. If $\log_b x = \log_b y$, then x = y (x > 0 and y > 0).

4. If x = y, then $\log_b x = \log_b y$ (x > 0 and y > 0).

Equations and Inequalities

Linear Equation in *x* (First-Degree Equation in *x*)

ax + b = c, where a, b, and c are real numbers and $a \neq 0$.

Types of Equations and their Solutions

Conditional: Finite Number of Solutions

Identity: Infinite Number of Solutions

Contradiction: No Solution

Linear Inequalities

Linear inequalities have the following forms where a, b, and c are real numbers and $a \neq 0$:

$$ax + b < c$$
 and $ax + b \le c$

$$ax + b > c$$
 and $ax + b \ge c$

Compound Inequalities

The inequalities c < ax + b < d and $c \le ax + b \le d$ are called **compound linear inequalities**. (This includes $c < ax + b \le d$ and $c \le ax + b < d$ as well.)

Absolute Value Equations

For statements 1 and 2, c > 0:

1. If
$$|x| = c$$
, then $x = c$ or $x = -c$.

2. If
$$|ax + b| = c$$
, then $ax + b = c$ or $ax + b = -c$.

3. If
$$|a| = |b|$$
, then either $a = b$ or $a = -b$.

4. If
$$|ax+b| = |cx+d|$$
, then either $ax+b=cx+d$ or $ax+b=-(cx+d)$.

Absolute Value Inequalities

For c > 0:

1. If
$$|x| < c$$
, then $-c < x < c$.

2. If
$$|ax + b| < c$$
, then $-c < ax + b < c$.

3. If
$$|x| > c$$
, then $x < -c$ or $x > c$.

4. If
$$|ax + b| > c$$
, then $ax + b < -c$ **or** $ax + b > c$.

(These statements hold true for \leq and \geq as well.)

Quadratic Equation

An equation that can be written in the form $ax^2 + bx + c = 0$, where a, b, and c are real numbers and $a \ne 0$.

Quadratic Formula

The solutions of the general quadratic equation

$$ax^2 + bx + c = 0$$
, where $a \ne 0$, are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The Discriminant

The expression $b^2 - 4ac$, the part of the quadratic formula that lies under the radical sign, is called the **discriminant**.

If $b^2 - 4ac > 0$, there are two real solutions.

If $b^2 - 4ac = 0$, there is one real solution, $x = -\frac{b}{2a}$.

If $b^2 - 4ac < 0$, there are two nonreal solutions.

Systems of Linear Equations

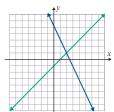
Systems of Linear Equations (Two Variables)

The system is...

consistent, and

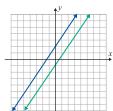
the equations are **independent**.

(One solution)

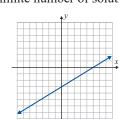


inconsistent, and the equations are **independent**.

(No solution)



consistent, and the equations are **dependent**. (Infinite number of solutions)



Functions

Function, Relation, Domain, and Range

A relation is a set of ordered pairs of real numbers.

The domain \mathbf{D} of a relation is the set of all first coordinates in the relation.

The range R of a relation is the set of all second coordinates

A function is a relation in which each domain element has exactly one corresponding range element.

One-to-One Functions

A function is a one-to-one function if for each value of *y* in the range there is only one corresponding value of x in the domain.

Algebraic Operations with Functions

1.
$$(f+g)(x) = f(x) + g(x)$$
 4. $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$

$$4. \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

2.
$$(f-g)(x) = f(x) - g(x)$$
 5. $(f \circ g)(x) = f(g(x))$

5.
$$(f \circ g)(x) = f(g(x))$$

Line of Symmetry

$$3. (f \cdot g)(x) = f(x) \cdot g(x)$$

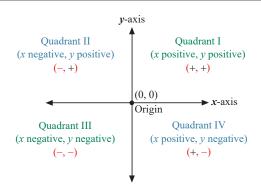
Inverse Functions

If f is a one-to-one function with ordered pairs of the form (x, y), then its inverse function, denoted as f^{-1} , is also a one-to-one function with ordered pairs of the form (y, x).

If f and g are one-to-one functions and f(g(x)) = x for all $x \text{ in } D_g \text{ and } g(f(x)) = x \text{ for all } x \text{ in } D_f, \text{ then } f \text{ and } g \text{ are } f$ inverse functions.

Graphs of Functions

The Cartesian Coordinate System



Linear Functions (Lines)

Standard form:

Ax + By = CWhere A and B do not both equal 0

Slope of a line:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 Where $x_1 \neq x_2$

Slope-intercept form:

$$y = mx + b$$
 With slope m and y-intercept $(0, b)$

Point-slope form:

$$y - y_1 = m(x - x_1)$$
 With slope m and point (x_1, y_1) on the line

Horizontal line, slope 0: y = b

Vertical line, undefined slope: x = a

Parallel lines have the same slope.

Perpendicular lines have slopes that are negative reciprocals of each other.

Quadratic Functions (Parabolas)

Parabolas of the form $y = ax^2 + bx + c$:

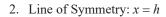
1. Vertex:
$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$
.

2. Line of Symmetry:
$$x = -\frac{b}{2a}$$

Parabolas of the form

$$y = a(x-h)^2 + k$$
:

1. Vertex: (h, k)



3. The graph is a horizontal shift of h units and a vertical shift of k units of the graph of $y = ax^2$.

In both cases:

- 1. If a > 0, the parabola "opens upward."
- 2. If a < 0, the parabola "opens downward."

Conic Sections

Equations of a Horizontal Parabola

 $x = ay^2 + by + c$ or $x = a(y-k)^2 + h$ where $a \ne 0$.

The parabola opens left if a < 0 and right if a > 0.

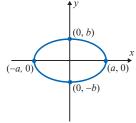
The vertex is at (h, k).

The line y = k is the line of symmetry.

Equation of an Ellipse

The standard form for the equation of an ellipse with its center at the origin is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

The points (a, 0) and (-a, 0) are the *x*-intercepts (called vertices).



The points (0, b) and (0, -b) are the *y*-intercepts (called vertices).

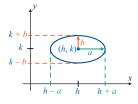
When $a^2 > b^2$:

- The segment of length 2*a* joining the *x*-intercepts is called the major axis.
- The segment of length 2b joining the y-intercepts is called the minor axis.

When $b^2 > a^2$:

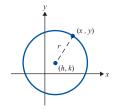
- The segment of length 2b joining the y-intercepts is called the major axis.
- The segment of length 2a joining the x-intercepts is called the minor axis.

The standard form for the equation of an ellipse with its center at (h, k) is $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$.



Equation of a Circle

The equation of a circle with radius r and center (h, k) is $(x-h)^2 + (y-k)^2 = r^2$.



Equation of a Hyperbola

In general, there are two standard forms for equations of hyperbolas with their centers at the origin.

1. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ $x\text{-intercepts (vertices) at } (a, 0) \text{ and } \frac{(-a, 0)}{a}$ (-a, 0)

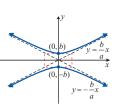


No y-intercepts

Asymptotes: $y = \frac{b}{a}x$ and $y = -\frac{b}{a}x$

The curves "open" left and right.

2. $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ y-intercepts (vertices) at (0, b) and (0, -b)

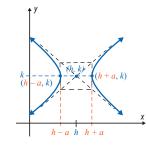


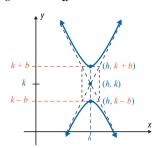
No *x*-intercepts

Asymptotes: $y = \frac{b}{a}x$ and $y = -\frac{b}{a}x$

The curves "open" up and down.

The equation of a hyperbola with its center at (h, k) is $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \text{ or } \frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1.$





Sequences and Series

Sequences

An **infinite sequence** (or a **sequence**) is a function that has the positive integers as its domain.

An **alternating sequence** is a sequence in which the terms alternate in sign.

A sequence is **decreasing** if successive terms become smaller.

A sequence is **increasing** if successive terms become larger.

Properties of Sigma Notation

For sequences $\{a_n\}$ and $\{b_n\}$ and any real number c, the following are true.

I.
$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{i} a_k + \sum_{k=i+1}^{n} a_k$$
 for any $i, 1 \le i \le n-1$

II.
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

III.
$$\sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k$$

$$IV. \sum_{k=1}^{n} c = nc$$

Arithmetic Sequences

A sequence $\{a_n\}$ is an **arithmetic sequence** if successive terms have a common difference, d.

$$a_{k+1} - a_k = d$$

The general n^{th} term has the form $a_n = a_1 + (n-1)d$.

The n^{th} partial sum S_n is $S_n = \sum_{i=1}^n a_i = \frac{n}{2} (a_1 + a_n)$.

Geometric Sequences and Series

A sequence $\{a_n\}$ is a **geometric sequence** if successive terms have a common ratio, r.

$$\frac{a_{k+1}}{a_k} = r$$

The general n^{th} term has the form $a_n = a_1 r^{n-1}$.

The n^{th} partial sum S_n is $S_n = \sum_{k=1}^n a_k = \frac{a_1 \left(1 - r^n\right)}{1 - r}$.

The indicated sum of all terms of a sequence is called an **infinite series** (or a series).

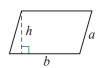
The sum of the infinite geometric series is $S = \sum_{k=1}^{\infty} a_k = \frac{a_1}{1-r}$.

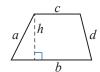
Geometry

P = Perimeter, A = Area, C = Circumference, V = Volume

Perimeter and Area

Rectangle	Square	Triangle	Parallelogram	Trapezoid	Circle
P = 2l + 2w	P = 4s	P = a + b + c	P = 2a + 2b	P = a + b + c + d	$C = 2\pi r = \pi d$
A = lw	$A = s^2$	$A = \frac{1}{2}bh$	A = bh	$A = \frac{1}{2}h(b+c)$	$A = \pi r^2$
					_





Right Circular Cylinder

 $V = \pi r^2 h$

Volume

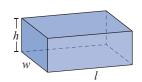
Rectangular Solid

Rectangular Pyramid
$$V = \frac{1}{2}lwh$$

$$V = \frac{1}{3}\pi r^2 h$$

Right Circular Cone

Sphere
$$V = \frac{4}{3}\pi r^3$$



V = lwh

Formulas and Theorems

Profit

Profit: The difference between selling price and cost.

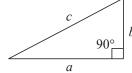
Profit = Selling Price - Cost

Percent of Profit:

- 1. Percent of profit based on cost: $\frac{\text{Profit}}{\text{Cost}}$
- 2. Percent of profit based on selling price: $\frac{\text{Profit}}{\text{Selling Price}}$

The Pythagorean Theorem

In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the two legs. $c^2 = a^2 + b^2$



Special Products

- 1. $x^2 a^2 = (x + a)(x a)$ Difference of two squares
- 2. $x^2 + 2ax + a^2 = (x + a)^2$ Square of a binomial sum
- 3. $x^2 2ax + a^2 = (x a)^2$ Square of a binomial difference
- **4.** $x^3 + a^3 = (x+a)(x^2 ax + a^2)$ Sum of two cubes
- 5. $x^3 a^3 = (x a)(x^2 + ax + a^2)$ Difference of two cubes

Change-of-Base Formula for Logarithms

For
$$a, b, x > 0$$
 and $a, b \ne 1$, $\log_b x = \frac{\log_a x}{\log_a b}$.

Distance Between Two Points

The distance *d* between points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.

Midpoint Formula

The midpoint between points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.

The Binomial Theorem

For real numbers a and b and a nonnegative integer n,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Binomial Coefficient $\binom{n}{r}$

For nonnegative integers n and r, with $0 \le r \le n$,

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}.$$

Matrices and Determinants

Matrices

System of Linear
EquationsCoefficient
MatrixAugmented
Matrix $\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$ $\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$ $\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{bmatrix}$

Elementary Row Operations

- 1. Interchange two rows.
- 2. Multiply a row by a nonzero constant.
- **3.** Multiply a row by a nonzero constant and add it to another row.

Upper Triangular Form and Row Echelon Form

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix}$$

A matrix is in **upper triangular form** if its entries in the lower left triangular region are all 0's. If a_{11} , a_{22} , and a_{33} (the entries along the main diagonal) all equal 1 when the matrix is in upper triangular form, then the matrix is also in **row echelon form** (or **ref**).

Gaussian Elimination

- 1. Write the augmented matrix for the system.
- **2.** Use elementary row operations to transform the matrix into row echelon form.
- **3.** Solve the corresponding system of equations by using back substitution.

Determinants

Value of a 2×2 Determinant:

For the square matrix, $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$,

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}.$$

Value of a 3×3 Determinant:

For the square matrix, $A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$,

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11} \left(\text{minor of } a_{11} \right) - a_{12} \left(\text{minor of } a_{12} \right) + a_{13} \left(\text{minor of } a_{13} \right)$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Cramer's Rule

For the system $\begin{cases} a_{11}x + a_{12}y = k_1 \\ a_{21}x + a_{22}y = k_2 \end{cases},$

$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad D_x = \begin{vmatrix} k_1 & a_{12} \\ k_2 & a_{22} \end{vmatrix}, \quad \text{and} \quad D_y = \begin{vmatrix} a_{11} & k_1 \\ a_{21} & k_2 \end{vmatrix},$$

if $D \neq 0$, then $x = \frac{D_x}{D}$ and $y = \frac{D_y}{D}$ is the unique solution to the system.