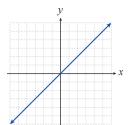
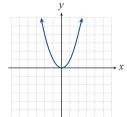
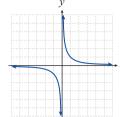
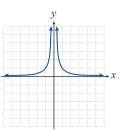
GRAPHS OF BASIC FUNCTIONS 4.4, 7.1, 7.3



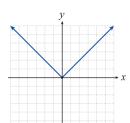




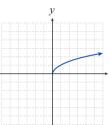




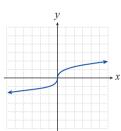
$$f(x) = x$$



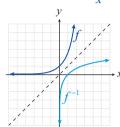
$$f(x) = x^2$$



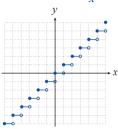
$$f(x) = x^3$$



$$f(x) = x^{-1} = \frac{1}{x}$$



$$f(x) = x^{-2} = \frac{1}{x^2}$$



$$f(x) = |x|$$

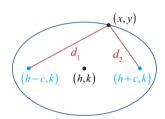
$$f(x) = x^{\frac{1}{2}} = \sqrt{x}$$

$$f(x) = x^{\frac{1}{3}} = \sqrt[3]{x}$$

$$f(x) = x^{\frac{1}{3}} = \sqrt[3]{x}$$
 $f(x) = e^x$ and $f^{-1}(x) = \ln x$

$$f(x) = \llbracket x \rrbracket$$

CONIC SECTIONS 8.1, 8.2, 8.3



Ellipse

Let a, b > 0 with a > b. The standard form of the equation of an ellipse centered at (h,k) with major axis of length 2a and minor axis of length 2b is as follows.

•
$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

(major axis is horizontal)

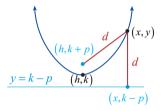
•
$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

(major axis is vertical)

The foci are located on the major axis cunits away from the center of the ellipse where $c^2 = a^2 - b^2$.

Eccentricity:
$$e = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a}$$

Note: If we let a = b, then e = 0 and the ellipse is a circle.



Parabola

Let *p* be a nonzero real number. The standard form of the equation of a parabola with vertex at (h,k) is as follows.

$$(x-h)^2 = 4p(y-k)$$

(vertically oriented)

Focus: (h, k+p)

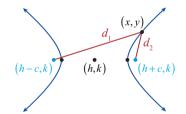
Directrix: y = k - p

•
$$(y-k)^2 = 4p(x-h)$$

(horizontally oriented)

Focus: (h+p,k)

Directrix: x = h - p



Hyperbola

Let a, b > 0. The standard form of the equation of a hyperbola with center at (h,k) is as follows.

•
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

(foci are aligned horizontally)

Asymptotes: $y - k = \pm \frac{b}{a}(x - h)$

•
$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

(foci are aligned vertically)

Asymptotes:
$$y - k = \pm \frac{a}{b}(x - h)$$

The foci are located c units away from the center, where $c^2 = a^2 + b^2$.

The vertices are located a units away from the center.

GEOMETRIC FORMULAS

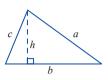
A = area, P = perimeter, C = circumference, SA = surface area, V = volume

Triangle

$$A = \frac{1}{2}bh$$

Heron's Formula:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$
where $s = \frac{a+b+c}{2}$



Rectangle

$$A = lw$$

$$P = 2l + 2w$$

Parallelogram

$$A = bh$$

Trapezoid

$$A = \frac{1}{2}h(b+c)$$

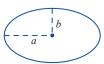
Circle

$$A = \pi r^2$$

$$C = 2\pi r$$

Ellipse

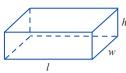
$$A = \pi a b$$



Rectangular Prism

$$V = lwh$$

$$SA = 2lh + 2wh + 2lw$$



Circular Cone

$$V = \frac{1}{3}\pi r^2 h$$

Rectangular Pyramid

$$V = \frac{1}{3}lwh$$

Right Circular Cylinder

$$V = \pi r^2 h$$

$$SA = 2\pi r^2 + 2\pi rh$$

Right Cylinder

 $V = (Area\ of\ Base)h$

Sphere

$$V = \frac{4}{3}\pi r^3$$

$$SA = 4\pi r^2$$

PROPERTIES OF ABSOLUTE VALUE 1.1

For all real numbers *a* and *b*:

$$|a| \ge 0 \qquad |-a| = |a|$$

$$a \le |a| \qquad |ab| = |a||b|$$

$$\left|\frac{a}{b}\right| = \frac{|a|}{|b|}, \ b \ne 0$$

 $|a+b| \le |a| + |b|$ (the triangle inequality)

PROPERTIES OF EXPONENTS AND RADICALS 1.3, 1.4

$$a^{n} \cdot a^{m} = a^{n+m} \qquad \left(a^{n}\right)^{m} = a^{nm} \qquad \left(ab\right)^{n} = a^{n}b^{n}$$

$$\frac{a^{n}}{a^{m}} = a^{n-m} \qquad a^{-n} = \frac{1}{a^{n}} \qquad \left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$$

$$a^{\frac{1}{n}} = \sqrt[n]{a} \qquad \sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b} \qquad a^{\frac{m}{n}} = \sqrt[n]{a^{m}} = \left(\sqrt[n]{a}\right)^{m}$$

$$\sqrt[n]{\frac{a}{b}} = \sqrt[n]{\frac{a}{\sqrt[n]{b}}} \qquad \sqrt[m]{\sqrt[n]{a}} = \sqrt[m]{a}$$

SPECIAL PRODUCT FORMULAS 1.6

$$(A-B)(A+B) = A^2 - B^2$$

 $(A+B)^2 = A^2 + 2AB + B^2$
 $(A-B)^2 = A^2 - 2AB + B^2$

FACTORING SPECIAL BINOMIALS 1.6

$$A^{2} - B^{2} = (A - B)(A + B)$$

$$A^{3} - B^{3} = (A - B)(A^{2} + AB + B^{2})$$

$$A^{3} + B^{3} = (A + B)(A^{2} - AB + B^{2})$$

QUADRATIC FORMULA 2.3

The solutions of the equation $ax^2 + bx + c = 0$ are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

PYTHAGOREAN THEOREM 3.1

Given a right triangle with legs a and b and hypotenuse c,

$$a^2 + b^2 = c^2$$

DISTANCE FORMULA 3.1

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

MIDPOINT FORMULA 3.1

$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

STANDARD FORM OF THE EQUATION OF A CIRCLE 3.2

The standard form of the equation of a circle of radius r and center (h,k) is

$$(x-h)^2 + (y-k)^2 = r^2.$$

SLOPE OF A LINE 3.4

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Horizontal lines y = c have a slope of 0.

Vertical lines x = c have an undefined slope.

FORMS OF LINEAR EQUATIONS 3.4

Standard form: ax + by = c

Slope-intercept form: y = mx + b

Point-slope form: $y - y_1 = m(x - x_1)$

PARALLEL AND PERPENDICULAR LINES 3.5

Given a line with slope *m*:

slope of parallel line = m

slope of perpendicular line = $-\frac{1}{m}$

TRANSFORMATIONS OF FUNCTIONS 5.1

Horizontal Shifting

The graph of g(x) = f(x - h) has the same shape as the graph of f, but shifted h units to the right if h > 0 and shifted h units to the left if h < 0.

Vertical Shifting

The graph of g(x) = f(x) + k has the same shape as the graph of f, but shifted upward k units if k > 0 and downward k units if k < 0.

Reflecting with Respect to Axes

- The graph of the function g(x) = -f(x) is the reflection of the graph of f with respect to the x-axis.
- The graph of the function g(x) = f(-x) is the reflection of the graph of f with respect to the y-axis.

Stretching and Compressing

- The graph of the function g(x) = af(x) is stretched vertically compared to the graph of f by a factor of a if a > 1.
- The graph of the function g(x) = af(x) is compressed vertically compared to the graph of f by a factor of a if 0 < a < 1.
- The graph of the function g(x) = f(ax) is stretched horizontally compared to the graph of f by a factor of $\frac{1}{a}$ if 0 < a < 1
- The graph of the function g(x) = f(ax) is compressed horizontally compared to the graph of f by a factor of $\frac{1}{a}$ if a > 1.

OPERATIONS WITH FUNCTIONS 5.3

Let f and g be functions.

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(fg)(x) = f(x)g(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
, when $g(x) \neq 0$

$$(f \circ g)(x) = f(g(x))$$

RATIONAL ZERO THEOREM 6.3

If $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is a polynomial with integer coefficients with $a_n \neq 0$, then any rational zero of f must be of the form $\frac{p}{q}$, where p is a factor of the constant term a_0 and q is a factor of the leading coefficient a_n .

FUNDAMENTAL THEOREM OF ALGEBRA 6.4

If p is a polynomial of degree n, with $n \ge 1$, then p has at least one zero. That is, the equation p(x) = 0 has at least one solution. (**Note:** The solution may be a nonreal complex number.)

COMPOUND INTEREST 7.2

An investment of P dollars, compounded n times per year at an annual interest rate of r, has a value after t years of

$$A(t) = P\left(1 + \frac{r}{n}\right)^{nt}.$$

An investment compounded continuously has an accumulated value of $A(t) = Pe^{rt}$.

PROPERTIES OF LOGARITHMS 7.3, 7.4

For a, x, y > 0, $a \ne 1$, and any real number r:

 $\log_a x = y$ and $x = a^y$ are equivalent

$$\log_a 1 = 0$$

$$\log_a a = 1$$

$$\log_a(a^x) = x$$

$$a^{\log_a x} = x$$

$$\log_a(xy) = \log_a x + \log_a y$$

$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

$$\log_a(x^r) = r \log_a x$$

CHANGE OF BASE FORMULA 7.4

For a, b, x > 0 and $a, b \ne 1$:

$$\log_b x = \frac{\log_a x}{\log_a b}$$

DETERMINANT OF A 2×2 MATRIX 9.3

The determinant of a 2×2 matrix $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ is given by the formula

$$|A| = a_{11}a_{22} - a_{21}a_{12}.$$

DETERMINANT OF AN $n \times n$ MATRIX 9.3

The minor of the element a_{ij} is the determinant of the $(n-1)\times(n-1)$ matrix formed from A by deleting the i^{th} row and the j^{th} column.

The cofactor of the element a_{ij} is $\left(-1\right)^{i+j}$ times the minor of a_{ij} . Find the determinant of an $n \times n$ matrix by expanding along a fixed row or column.

- To expand along the *i*th row, each element of that row is multiplied by its cofactor and the *n* products are then added.
- To expand along the jth column, each element of that column is multiplied by its cofactor and the n products are then added.

CRAMER'S RULE 9.3

A system of *n* linear equations in the *n* variables $x_1, x_2, ..., x_n$ can be written in the following form.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

The solution of the system is given by the *n* formulas

$$x_1 = \frac{D_{x_1}}{D}, x_2 = \frac{D_{x_2}}{D}, \dots, x_n = \frac{D_{x_n}}{D},$$

where D is the determinant of the coefficient matrix and D_{x_i} is the determinant of the same matrix with the i^{th} column of constants replaced by the column of constants b_1, b_2, \ldots, b_n .

MATRIX ADDITION 9.4

A + B = the matrix such that $c_{ij} = a_{ij} + b_{ij}$ (c_{ij} is the element in the i^{th} row and j^{th} column of A + B).

SCALAR MULTIPLICATION 9.4

cA = the matrix such that the element in the i^{th} row and j^{th} column is equal to ca_{ij} .

MATRIX MULTIPLICATION 9.4

AB = the matrix such that $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$. (The length of each row in A must be the same as the length of each column of B.)

PROPERTIES OF SIGMA NOTATION 10.1

For sequences $\{a_n\}$ and $\{b_n\}$ and a constant c:

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i \qquad \sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i$$

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{k} a_i + \sum_{i=k+1}^{n} a_i \text{ (for any } 1 \le k \le n-1)$$

SUMMATION FORMULAS 10.1

$$\sum_{i=1}^{n} 1 = n$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

SEQUENCES AND SERIES

Arithmetic 10.2

Let $\{a_n\}$ be an arithmetic sequence with common difference d.

General term:
$$a_n = a_1 + (n-1)d$$

Partial sum:
$$S_n = na_1 + d\left(\frac{(n-1)n}{2}\right) = \left(\frac{n}{2}\right)(a_1 + a_n)$$

Geometric 10.3

Let $\{a_n\}$ be a geometric sequence with common ratio r.

General term:
$$a_n = a_1 r^{n-1}$$

Partial sum:
$$S_n = \frac{a_1(1-r^n)}{1-r}$$
, if $r \neq 0, 1$

Infinite sum:
$$S = \sum_{n=0}^{\infty} a_1 r^n = \frac{a_1}{1-r}$$
, if $|r| < 1$

PERMUTATION FORMULA 10.5

$$_{n}P_{k}=\frac{n!}{(n-k)!}$$

COMBINATION FORMULA 10.5

$$_{n}C_{k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

BINOMIAL THEOREM 10.5

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}$$

MULTINOMIAL COEFFICIENTS 10.5

$$\binom{n}{k_1, k_2, \dots, k_r} = \frac{n!}{k_1! k_2! \cdots k_r!}$$

MULTINOMIAL THEOREM 10.5

$$(A_1 + A_2 + \dots + A_r)^n = \sum_{k_1 + k_2 + \dots + k_r = n} {n \choose k_1, k_2, \dots, k_r} A_1^{k_1} A_2^{k_2} \cdots A_r^{k_r}$$

INDEX OF SYMBOLS

Symbol	Meaning
\mathbb{N}	set of all natural numbers $\{1,2,3,4,5,\}$
\mathbb{Z}	set of all integers $\{,-4,-3,-2,-1,0,1,2,3,4,\}$
\mathbb{Q}	set of all rational numbers; that is, the set of all numbers that can be represented as a ratio of integers
\mathbb{R}	set of all real numbers
π	the ratio of the circumference to the diameter of a circle
Е	calculator notation for scientific notation (for example, $a \in b$ means $a \times 10^b$)
∞	infinity
i	imaginary unit defined as $\sqrt{-1}$
\Leftrightarrow	"is equivalent to"
\Rightarrow	"implies"
\cup	the union of two sets (that is, the set of all elements found in either set)
\cap	the intersection of two sets (that is, the set of all elements found in both sets)
€	"is an element of"
Ø	empty set or the set containing no elements
\rightarrow	"approaches"
≈	"approximately equal to"
Δ	"change in"
\mathbb{R}^2	the plane of all real x-values by all real y-values (the Cartesian plane)
$\sum_{i=a}^{n}$	summation notation (or sigma notation) used to express the sum of a sequence from a to n
e	base of the natural logarithm
n!	" <i>n</i> factorial" stands for the product of all the integers from 1 to n (0! = 1 and 1! = 1)
$\binom{n}{k}$	" n choose k "; combination of n objects taken k at a time