
ALGEBRA

Properties of Absolute Value
For all real numbers a and b:
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Properties of Integer Exponents and Radicals
Assume that n and m are positive integers, that a and b are 
nonnegative, and that all denominators are nonzero. See 
Appendices B and D for graphs and further discussion.
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Special Product Formulas
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Factoring Special Binomials
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Quadratic Formula
The solutions of the equation ax2 + bx + c = 0 are
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Distance Formula
The distance d between two points x y
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,� �  and x y
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Midpoint Formula
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Slope of a Line
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Horizontal lines y = c have slope 0.

Vertical lines x = c have undefined slope.

Parallel and Perpendicular Lines
Given a line with slope m:

	 slope of parallel line = m

	 slope of perpendicular line =  -1 m

Forms of Linear Equations

Standard Form:  ax + by = c

Slope-Intercept Form:  y = mx + b, where m is the slope and b 
is the y-intercept

Point-Slope Form:  y y m x x� � �� �1 1
, where m is the slope 

and x y
1 1
,� �  is a point on the line

Properties of Logarithms
Let a, b, x, and y be positive real numbers with a ≠ 1 and 
b ≠ 1, and let r be any real number. See Appendix B for 
graphs and further discussion.
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GEOMETRY

A = area,  C = circumference,  SA = surface area or lateral area,  V = volume
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Rectangular Prism Sphere Rectangular Pyramid

V = lwh  SA = 2lh + 2wh + 2lw V r=
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Trigonometric and Hyperbolic Functions: Definitions, Graphs, and Identities
See Appendix C.



LIMITS

Definition of Limit
Let  f  be a function defined on an open interval containing 
c, except possibly at c itself. We say that the limit of 
f x� �  as x approaches c is L, and write lim ,

x c
f x L

�
� � �  if 

for every number e > 0 there is a number d > 0 such that 
f x L� � � � e  whenever x satisfies 0 � � �x c d.

Basic Limit Laws
Sum Law:
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Constant Multiple Law:
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The Squeeze Theorem
If g x f x h x� � � � � � � �  for all x in some open 
interval containing c, except possibly at c itself, and if 
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Continuity at a Point
Given a function  f  defined on an open interval containing c, 
we say  f  is continuous at c if

lim .
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L’Hôpital’s Rule
Suppose  f  and g are differentiable at all points of an open 
interval I containing c, and that �� � �g x 0  for all x ∈ I except 
possibly at x = c. Suppose further that either
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assuming the limit on the right is a real number or ∞ or -∞.

CONIC SECTIONS

Ellipse

h k,( )
Focus Focus

Let a, b > 0 with a b≥ .  
Center: h k,� �  
Major axis length: 2a 
Minor axis length: 2b
Standard form of equation:
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Major axis is horizontal
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Major axis is vertical

Foci: �on major axis, c units away 
from the center, where 
c2 = a2 - b2

Parabola

Focus

Directrix h k,( )
Let p ≠ 0.
Vertex: h k,� �  
Standard form of equation:

1.	 � x h p y k�� � � �� �2

4  
Vertically oriented

	 Focus: h k p, �� �  

	 Directrix: y k p� �

2.	 � y k p x h�� � � �� �2

4  
Horizontally oriented

	 Focus: h p k�� �,

	 Directrix: x h p� �

Hyperbola

Vertex
Focus Focus

Vertex

h k,( )

Let a, b > 0. 
Center: h k,� �  
Standard form of equation:
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Foci are aligned horizontally

	 Asymptotes: y k b
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Foci are aligned vertically

	 Asymptotes: y k a
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Foci: �c units away from the center, 
where c2 = a2 + b2

Vertices: a units away from the center



Elementary Differentiation Rules

Constant Rule:

d
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Constant Multiple Rule:
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Difference Rule:
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Quotient Rule:

d
dx

f x
g x

f x g x f x g x

g x

� �
� �

�

�
�
�

�

�
�
�
�

�� � � � � � � �� �
� ��� ��

2

Power Rule:
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Chain Rule:
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DERIVATIVES

The Derivative of a Function
The derivative of  f , denoted ′f ,  is the function whose  
value at the point x is
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provided the limit exists.

Derivatives of Exponential and Logarithmic Functions
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Derivatives of Trigonometric Functions

d
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x xsin cos� � � d
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Derivatives of Inverse Trigonometric Functions
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Derivatives of Hyperbolic Functions

d
dx

x xsinh cosh� � � d
dx

x xcosh sinh� � � d
dx

x xtanh sech� � � 2

d
dx

x x xcsch csch coth� � � � d
dx

x x xsech sech tanh� � � � d
dx

x xcoth csch� � � � 2



Derivatives of Inverse Hyperbolic Functions
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The Derivative Rule for Inverse Functions
If a function  f  is differentiable on an interval a b, ,� �  and 
if �� � �f x 0  for all x a b�� �, ,  then f -1  both exists and is 
differentiable on the image of the interval a b,� �  under  f , 
denoted as f a b,� �� � in the formula below. Further,
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The Mean Value Theorem
If  f  is continuous on the closed interval a b,� �  and 
differentiable on a b, ,� �  then there is at least one point 
c a b�� �,  for which 
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INTEGRATION

Properties of the Definite Integral
Given the integrable functions  f  and g on the interval a b,� �  
and any constant k, the following properties hold.
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7.  If f x g x� � � � �  on a b, ,� �  then 
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The Fundamental Theorem of Calculus
Part I

Given a continuous function  f  on an interval I and a fixed 
point a ∈ I, define the function F on I by F x f t dt

a

x
� � � � �� .  

Then �� � � � �F x f x  for all x ∈ I.

Part II
If  f  is a continuous function on the interval a b,� �  and if F 
is any antiderivative of  f  on a b, ,� �  then

f x dx F b F a
a

b
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The Substitution Rule
If u g x� � �  is a differentiable function whose range is the 
interval I, and if  f  is continuous on I, then

f g x g x dx f u du� �� � �� � � � �� � .

Hence, if F is an antiderivative of  f  on I, 

f g x g x dx F g x C� �� � �� � � � �� � �� .

Integration by Parts
Given differentiable functions  f  and g, 

f x g x dx f x g x g x f x dx� � �� � � � � � � � � � �� �� � .

If we let u f x� � �  and v g x� � � ,  then du f x dx� �� �  and 
dv g x dx� �� �  and the equation takes on the more easily 
remembered differential form

u dv uv v du� �� � .



SEQUENCES AND SERIES

Summation Facts and Formulas

Constant Rule for Finite Sums:
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Sum/Difference Rule for Finite Sums:
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Geometric Series

For a geometric sequence an� �  with common ratio r:
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Binomial Series

For any real number m and -1 < x < 1,

1

1
1

2

1 2

3

0

2 3

�� � �
�

�
�

�

�
�

� � �
�� �

�
�� � �� �

�

�

�

�

�x
m
n
x

mx
m m

x
m m m

x

m

m n

n

! !


mm m n
n

xn
�� � � �� �

�
1 1



!

where

m m
m

m m m

m
n

m m

0
1

1 2

1

2

1

�

�
�

�

�
� �

�

�
�

�

�
� �

�

�
�

�

�
� �

�� �

�

�
�

�

�
� �

�� �

, ,
!

,

and
 m n
n

n
� �� �

�
1

3
!

. for 

Taylor Series and Maclaurin Series

Given a function  f  with derivatives of all orders throughout an open interval containing a, the power series 
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is called the Taylor series generated by  f  about a. The Taylor series generated by  f  about 0 is also known as the Maclaurin 
series generated by  f .


