ALGEBRA

Properties of Absolute Value

For all real numbers *a* and *b*:

$$|a| \ge 0$$
 $|-a| = |a|$
 $a \le |a|$ $|ab| = |a||b|$

$$\left| \frac{a}{b} \right| = \frac{|a|}{|b|}, \ b \neq 0$$

$$|a+b| \le |a| + |b|$$
 Triangle Inequality

Properties of Integer Exponents and Radicals

Assume that *n* and *m* are positive integers, that *a* and *b* are nonnegative, and that all denominators are nonzero. See Appendices B and D for graphs and further discussion.

$$a^{n} \cdot a^{m} = a^{n+m} \qquad \left(a^{n}\right)^{m} = a^{nm}$$

$$\frac{a^{n}}{a^{m}} = a^{n-m} \qquad \left(ab\right)^{n} = a^{n}b^{n}$$

$$a^{-n} = \frac{1}{a^n} \qquad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$a^{1/n} = \sqrt[n]{a}$$

$$a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

$$\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$$

$$\sqrt[n]{a} = \sqrt[n]{a}\sqrt[n]{b}$$

$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$

$$\sqrt[n]{a} = \sqrt[nn]{a}$$

Special Product Formulas

$$(A-B)(A+B) = A^{2} - B^{2}$$

$$(A+B)^{2} = A^{2} + 2AB + B^{2}$$

$$(A-B)^{2} = A^{2} - 2AB + B^{2}$$

$$(A+B)^{3} = A^{3} + 3A^{2}B + 3AB^{2} + B^{3}$$

$$(A-B)^{3} = A^{3} - 3A^{2}B + 3AB^{2} - B^{3}$$

Factoring Special Binomials

$$A^{2} - B^{2} = (A - B)(A + B)$$

$$A^{3} - B^{3} = (A - B)(A^{2} + AB + B^{2})$$

$$A^{3} + B^{3} = (A + B)(A^{2} - AB + B^{2})$$

Quadratic Formula

The solutions of the equation $ax^2 + bx + c = 0$ are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Distance Formula

The distance d between two points (x_1, y_1) and (x_2, y_2) is

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Midpoint Formula

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$

Slope of a Line

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 Horizontal lines $y = c$ have slope 0.
Vertical lines $x = c$ have undefined slope.

Parallel and Perpendicular Lines

Given a line with slope *m*:

slope of parallel line = m

slope of perpendicular line = -1/m

Forms of Linear Equations

Standard Form: ax + by = c

Slope-Intercept Form: y = mx + b, where m is the slope and b is the y-intercept

Point-Slope Form: $y - y_1 = m(x - x_1)$, where *m* is the slope and (x_1, y_1) is a point on the line

Properties of Logarithms

Let a, b, x, and y be positive real numbers with $a \ne 1$ and $b \ne 1$, and let r be any real number. See Appendix B for graphs and further discussion.

 $\log_a x = y$ and $x = a^y$ are equivalent

$$\log_a 1 = 0 \qquad \qquad \log_a a = 1$$

$$\log_a\left(a^x\right) = x \qquad \qquad a^{\log_a x} = x$$

$$\log_a(xy) = \log_a x + \log_a y$$

$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

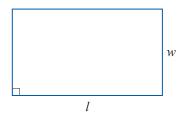
$$\log_a(x^r) = r \log_a x$$

$$\log_b x = \frac{\log_a x}{\log b}$$
 Change of base formula

A = area, C = circumference, SA = surface area or lateral area, V = volume

Rectangle

$$A = lw$$



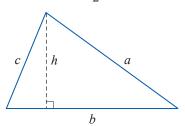
Circle

$$A = \pi r^2 \quad C = 2\pi r$$



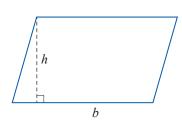
Triangle

$$A = \frac{1}{2}bh$$



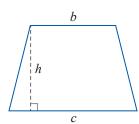
Parallelogram

$$A = bh$$



Trapezoid

$$A = \frac{1}{2}h(b+c)$$



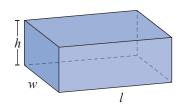
Heron's Formula:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

where
$$s = \frac{a+b+c}{2}$$

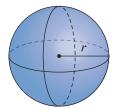
Rectangular Prism

$$V = lwh$$
 $SA = 2lh + 2wh + 2lw$



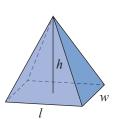
Sphere

$$V = \frac{4}{3}\pi r^3 \quad SA = 4\pi r^2$$



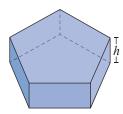
Rectangular Pyramid

$$V = \frac{1}{3}lwh$$



Right Cylinder

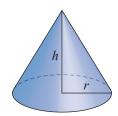
$$V = (Area of Base)h$$



Right Circular Cylinder

Cone

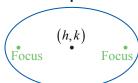
$$V = \pi r^2 h$$
 $SA = 2\pi r^2 + 2\pi r h$ $V = \frac{1}{3}\pi r^2 h$ $SA = \pi r^2 + \pi r \sqrt{r^2 + h^2}$



See Appendix C.

CONIC SECTIONS

Ellipse



Let a, b > 0 with $a \ge b$.

Center: (h,k)

Major axis length: 2a Minor axis length: 2b

Standard form of equation:

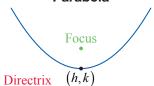
1.
$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

2.
$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

Foci: on major axis, c units away from the center, where

$$c^2 = a^2 - b^2$$

Parabola



Let $p \neq 0$.

Vertex: (h, k)

Standard form of equation:

1.
$$(x-h)^2 = 4p(y-k)$$

Focus: (h, k+p)

Directrix: y = k - p

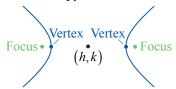
2.
$$(y-k)^2 = 4p(x-h)$$

Horizontally oriented

Focus: (h+p,k)

Directrix: x = h - p

Hyperbola



Let a, b > 0.

Center: (h,k)

Standard form of equation:

1.
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$
Foci are aligned horizontally

Asymptotes: $y - k = \pm \frac{b}{a}(x - h)$

2.
$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$
Foci are aligned vertically

Asymptotes: $y - k = \pm \frac{a}{b}(x - h)$

Foci: c units away from the center, where $c^2 = a^2 + b^2$

Vertices: a units away from the center

LIMITS

Definition of Limit

Let f be a function defined on an open interval containing c, except possibly at c itself. We say that the limit of f(x) as x approaches c is L, and write $\lim f(x) = L$, if for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that $|f(x)-L| < \varepsilon$ whenever x satisfies $0 < |x-c| < \delta$.

Basic Limit Laws

Sum Law:

$$\lim_{x \to c} \left[f(x) + g(x) \right] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$$

Difference Law:

$$\lim_{x \to c} \left[f(x) - g(x) \right] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$$

Constant Multiple Law:

$$\lim_{x \to \infty} \left[kf(x) \right] = k \lim_{x \to \infty} f(x)$$

Product Law:

$$\lim_{x \to c} \left[f(x)g(x) \right] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$$

Quotient Law:

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}, \text{ provided } \lim_{x \to c} g(x) \neq 0$$

The Squeeze Theorem

If $g(x) \le f(x) \le h(x)$ for all x in some open interval containing c, except possibly at c itself, and if $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} f(x) = L$ as well.

Continuity at a Point

Given a function f defined on an open interval containing c, we say f is continuous at c if

$$\lim_{x \to c} f(x) = f(c).$$

L'Hôpital's Rule

Suppose f and g are differentiable at all points of an open interval I containing c, and that $g'(x) \neq 0$ for all $x \in I$ except possibly at x = c. Suppose further that either

$$\lim_{x \to c} f(x) = 0 \quad \text{and} \quad \lim_{x \to c} g(x) = 0$$

or

$$\lim_{x \to c} f(x) = \pm \infty$$
 and $\lim_{x \to c} g(x) = \pm \infty$.

Then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)},$$

assuming the limit on the right is a real number or ∞ or $-\infty$.

The Derivative of a Function

The derivative of f, denoted f', is the function whose value at the point x is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

provided the limit exists.

Derivatives of Exponential and Logarithmic Functions

$$\frac{d}{dx}(e^x) = e^x \qquad \frac{d}{dx}(a^x) = a^x \ln a$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x} \qquad \frac{d}{dx}(\log_a x) = \frac{1}{\ln a} \cdot \frac{1}{x}$$

Elementary Differentiation Rules

Constant Rule:

$$\frac{d}{dx}(k) = 0$$

Constant Multiple Rule:

$$\frac{d}{dx} \left[k f(x) \right] = k \cdot \frac{d}{dx} f(x)$$

Sum Rule:

$$\frac{d}{dx} \left[f(x) + g(x) \right] = \frac{d}{dx} f(x) + \frac{d}{dx} g(x)$$

Difference Rule:

$$\frac{d}{dx} \left[f(x) - g(x) \right] = \frac{d}{dx} f(x) - \frac{d}{dx} g(x)$$

Product Rule:

$$\frac{d}{dx} \left[f(x)g(x) \right] = \left[\frac{d}{dx} f(x) \right] g(x) + f(x) \left[\frac{d}{dx} g(x) \right]$$

Quotient Rule:

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) - f(x)g'(x)}{\left[g(x) \right]^2}$$

Power Rule:

$$\frac{d}{dx}(x^r) = rx^{r-1}$$

Chain Rule:

$$\frac{d}{dx} \Big[f(g(x)) \Big] = f'(g(x)) \cdot g'(x)$$

Derivatives of Trigonometric Functions

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

Derivatives of Inverse Trigonometric Functions

$$\frac{d}{dx}\left(\sin^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\left(\cos^{-1}x\right) = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\left(\tan^{-1}x\right) = \frac{1}{1+x^2}$$

$$\frac{d}{dx}\left(\csc^{-1}x\right) = -\frac{1}{|x|\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}\left(\sec^{-1}x\right) = \frac{1}{|x|\sqrt{x^2-1}}$$

$$\frac{d}{dx}\left(\cot^{-1}x\right) = -\frac{1}{1+x^2}$$

Derivatives of Hyperbolic Functions

$$\frac{d}{dx}(\sinh x) = \cosh x$$

$$\frac{d}{dx}(\cosh x) = \sinh x$$

$$\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$$

$$\frac{d}{dx}(\operatorname{csch} x) = -\operatorname{csch} x \operatorname{coth} x$$

$$\frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x$$

$$\frac{d}{dx}(\coth x) = -\operatorname{csch}^2 x$$

Derivatives of Inverse Hyperbolic Functions

$$\frac{d}{dx}\left(\sinh^{-1}x\right) = \frac{1}{\sqrt{1+x^2}}$$

$$\frac{d}{dx} \left(\cosh^{-1} x \right) = \frac{1}{\sqrt{x^2 - 1}}, \quad x > 1$$

$$\frac{d}{dx}\left(\tanh^{-1}x\right) = \frac{1}{1-x^2}, \quad |x| < 1$$

$$\frac{d}{dx}\left(\operatorname{csch}^{-1}x\right) = \frac{-1}{|x|\sqrt{1+x^2}}$$

$$\frac{d}{dx} \left(\operatorname{sech}^{-1} x \right) = \frac{-1}{x\sqrt{1-x^2}}, \quad 0 < x < 1$$

$$\frac{d}{dx}\left(\coth^{-1}x\right) = \frac{1}{1-x^2}, \quad |x| > 1$$

The Derivative Rule for Inverse Functions

If a function f is differentiable on an interval (a,b), and if $f'(x) \neq 0$ for all $x \in (a,b)$, then f^{-1} both exists and is differentiable on the image of the interval (a,b) under f, denoted as f((a,b)) in the formula below. Further,

if
$$x \in (a,b)$$
, then $(f^{-1})'(f(x)) = \frac{1}{f'(x)}$,

and

if
$$x \in f((a,b))$$
, then $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$.

The Mean Value Theorem

If f is continuous on the closed interval [a,b] and differentiable on (a,b), then there is at least one point $c \in (a,b)$ for which

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
.

INTEGRATION

Properties of the Definite Integral

Given the integrable functions f and g on the interval [a,b]and any constant k, the following properties hold.

$$1. \int_a^a f(x) dx = 0$$

1.
$$\int_{a}^{a} f(x) dx = 0$$
 2. $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$

$$3. \int_a^b k \, dx = k \left(b - a \right)$$

3.
$$\int_{a}^{b} k \, dx = k(b-a)$$
 4. $\int_{a}^{b} k f(x) \, dx = k \int_{a}^{b} f(x) \, dx$

5.
$$\int_{a}^{b} \left[f(x) \pm g(x) \right] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

6.
$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$
, assuming each integral exists

7. If
$$f(x) \le g(x)$$
 on $[a,b]$, then
$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx.$$

8. If
$$m = \min_{a \le x \le b} f(x)$$
 and $M = \max_{a \le x \le b} f(x)$, then
$$m(b-a) \le \int_a^b f(x) dx \le M(b-a).$$

The Fundamental Theorem of Calculus

Part I

Given a continuous function f on an interval I and a fixed point $a \in I$, define the function F on I by $F(x) = \int_{-\infty}^{x} f(t) dt$. Then F'(x) = f(x) for all $x \in I$.

Part II

If f is a continuous function on the interval [a,b] and if F is any antiderivative of f on [a,b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

The Substitution Rule

If u = g(x) is a differentiable function whose range is the interval I, and if f is continuous on I, then

$$\int f(g(x))g'(x)dx = \int f(u)du.$$

Hence, if F is an antiderivative of f on I,

$$\int f(g(x))g'(x)dx = F(g(x)) + C.$$

Integration by Parts

Given differentiable functions f and g,

$$\int f(x)g'(x)dx = f(x)g(x) - \int g(x)f'(x)dx.$$

If we let u = f(x) and v = g(x), then du = f'(x)dx and dv = g'(x)dx and the equation takes on the more easily remembered differential form

$$\int u \, dv = uv - \int v \, du.$$

SEQUENCES AND SERIES

Summation Facts and Formulas

Constant Rule for Finite Sums:

$$\sum_{i=1}^{n} c = nc$$
, for any constant c

Constant Multiple Rule for Finite Sums:

$$\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i, \text{ for any constant } c$$

Sum/Difference Rule for Finite Sums:

$$\sum_{i=1}^{n} (a_i \pm b_i) = \sum_{i=1}^{n} a_i \pm \sum_{i=1}^{n} b_i$$

Sum of the First *n* Positive Integers:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Sum of the First *n* Squares:

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

Sum of the First n Cubes:

$$\sum_{i=1}^{n} i^{3} = \frac{n^{2} (n+1)^{2}}{4}$$

Geometric Series

For a geometric sequence $\{a_n\}$ with common ratio r:

Partial Sum:

$$s_n = \frac{a(1-r^n)}{1-r}$$
, if $r \neq 0, 1$

Infinite Sum:

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}, \text{ if } |r| < 1$$

Binomial Series

For any real number m and -1 < x < 1,

$$(1+x)^{m} = \sum_{n=0}^{\infty} {m \choose n} x^{n}$$

$$= 1 + mx + \frac{m(m-1)}{2!} x^{2} + \frac{m(m-1)(m-2)}{3!} x^{3} + \cdots$$

$$+ \frac{m(m-1)\cdots(m-n+1)}{n!} x^{n} + \cdots$$

where

$$\binom{m}{0} = 1$$
, $\binom{m}{1} = m$, $\binom{m}{2} = \frac{m(m-1)}{2!}$,
and $\binom{m}{n} = \frac{m(m-1)\cdots(m-n+1)}{n!}$ for $n \ge 3$.

Taylor Series and Maclaurin Series

Given a function f with derivatives of all orders throughout an open interval containing a, the power series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$$

is called the Taylor series generated by f about a. The Taylor series generated by f about 0 is also known as the Maclaurin series generated by f.