
 

 

 

    

  

  

   

 

   

  
 

  
 

  

  

 

Chapter 1 Conceptual Project: 
Minding the Hole in the Ozone Layer 
As time goes on, there is increasing awareness, controversy, and legislation 
regarding the ozone layer and other environmental issues. The hole in the ozone 
layer over the South Pole disappears and reappears in a cyclical manner annually. 
Suppose that over a particular stretch of time the hole is assumed to be circular 
with a radius growing at a constant rate of 2.6 kilometers per hour. 

1. Assuming that t is measured in hours, that t = 0 
corresponds to the start of the annual growth of the 
hole, and that the radius of the hole is initially 0, write 
the radius as a function of time, t. Denote this function 
by r t˜ °. 5. What are the radius and area after 3 hours? 

After 5.5 hours?
2. Use function composition to write the area of the 

hole as a function of time, t. Denote this function by 6. What is the average rate of change of the area from 
A t˜ °.  Sketch the graph of A t˜ ° and label the axes 3 hours to 5.5 hours? 

appropriately. 
7. What is the average rate of change of the area from 

3. After finding A˜ °1 ,  the area of the ozone hole at the 5.5 hours to 8 hours? 
end of the first hour, determine the time necessary for 
this area to double. How much additional time does it 8. Is the average rate of change of the area increasing or 
take to reach three times the initial area? decreasing as time passes? 

4. Are the two time intervals you found in Question 3 9. What flaws do you see with this model? Can you think 
equal? If not, which one is greater? Explain your of a better approach to modeling the growth of the 
finding. (Use a comparison of some basic functions ozone hole? 
discussed in Section 1.2 in your explanation.) 

Figure 1 
Source: NASA 
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Chapter 1 Application Project: 
Pandemic Predictions 
The emergence of the SARS-CoV-2 virus in late 2019 and its subsequent rapid global spread changed the world as we know 
it. The World Health Organization declared the spread to be a pandemic, known as Covid-19, in March 2020, recommending 
precautions such as cleanliness, social distancing, and the use of face masks. Mathematics in general, and functions in particular, 
provide us with the tools to build models that help us understand the spread of contagious diseases and the nature of epidemics 
or pandemics. This project will provide an introduction to the way such models can be built. Good mathematical models can 
not only help us understand how an epidemic or pandemic runs its course, but can also be used in decision making regarding 
mitigation measures and allocation of resources in order to save lives! 

Figure 1 The Covid-19 Pandemic in the United States, January 2020 to September 2022 
Source: Google COVID-19 Open Data (goo.gle/covid-19-open-data) 

Covid-19 was of particular concern early on when there were 
no vaccines available and the overwhelming majority of the 
population had not yet been exposed to the virus, making them 
susceptible to it. In this project, we will build a rudimentary 
mathematical model to describe and understand the spread of 
the disease on a college campus of 25,000 students, with the 
following simplifying assumptions. 

• Anyone catching the disease eventually recovers. 

• After recovery, any affected individual becomes 
immune (i.e., we will assume there are no 
reinfections). 

• There are no vaccines yet available. 

Further, we will partition the campus population into the 
following three subsets: 

• Infected, meaning those students carrying the virus 
(with or without symptoms) 

• Recovered, meaning those students who cannot be 
reinfected (due to our simplifying assumptions) 

• Susceptible, meaning those who have not yet had the 
virus and can still potentially get it 

Note that the sizes of these sets depend on time—that is, they 
are functions of time—while at any moment in time, they 
always add up to the total of 25,000 students. We will denote 
these subsets of people by Pi, Pr, and Ps, respectively. 

http://goo.gle/covid-19-open-data


  

   

   

   

 

  

  

         
 

  
 
 
 

    

  

  

    

   

 

  

1. Figure 2 illustrates how the size of the infected 2. How would you expect the number of susceptible 
subpopulation Pi may depend on time t. students to change over time? Explain and sketch a 

possible graph of the size of Ps over time. 

3. Answer Question 2 and sketch a possible graph for the 
recovered subpopulation Pr. 

Figure 2 
Possible Graph of the Number of Infected Students over Time 

a. What are the independent and dependent variables 
of this function? 

b. Use the features of the graph to explain why it 
seems realistic. What does it tell you about the way 
the infection runs its course on campus? 

c. Use function notation to write an equation 
expressing the fact that the numbers of infected, 
recovered, and susceptible student populations sum 
up to 25,000 at any given time. (Hint: remember 
that Pi, Pr, and Ps are functions of time t.) 

Throughout the Covid-19 pandemic, the daily reports included (among other data) the number of new cases on a given day. 
Note that this is an important measure of how fast the infection spreads. In other words, using the general concept of “rate” 
being “change divided by time,” you can think of that number as the rate of increase in size of the set of people who have caught 
the disease. (You will learn more about rates starting in Chapter 2.) Throughout the next few questions, we are going to build an 
equation modeling the progression of the disease in the college population. Our assumptions will be as follows. New infections 
are always the result of interactions between members of the infected and susceptible populations. Even though not all interactions 
result in new infections, a certain percentage of them do (note that this percentage can be decreased by mitigation measures, such as 
masking or distancing). We will assume that the number of interactions is directly proportional to both Ps and Pi . 

4. Find a formula for N(t), the number of daily new 6. a. Given that some students get infected while others 
infections, given the assumptions above. (The constant recover every single day, use your answers to 
of proportionality in this case is called the transmission Questions 4 and 5 to find a formula for P t ,  the ̃ °i 

coefficient. Let us denote it by b.) daily increase in numbers of the infected student 
population.

5. Given that, on average, an infected person is 
b. Use your formula to predict the number of newcontagious for about ten days, explain why we can 

infections on a day when 500 students are carryingP ti ˜ °expect approximately  students to recover daily. the virus and 1000 have already recovered. Use the
10 value b = 0.000025 for the transmission coefficient.Discuss the limitations of this model. 

7. Use the equation obtained in Question 6 to predict 
the size of the susceptible population (i.e., those who 
have not caught the virus) when the epidemic peaks 
on campus. (Hint: Find what value of Ps predicts a 
zero daily increase in Pi for the first time. Round to the 
nearest integer. Then check that the following day, the 
predicted daily increase in Pi is negative.) 
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Chapter 2 Conceptual Project: 
Before Unlimited Calls 

Some years ago, it was common for long-distance phone companies to charge their customers in one-minute increments. 
In other words, the company charges a flat fee for the first minute of a call and another fee for each additional minute or 
any fraction thereof (see Exercise 82 in Section 2.5). In this project, we will explore in detail a function that gives the cost 
of a telephone call under the above conditions. 

1. Suppose a long‑distance call costs 75 cents for the first 5. In layman’s terms, interpret lim C t° ˛. 
t˜2 5.

minute plus 50 cents for each additional minute or 
6. In layman’s terms, interpret lim C t˛ ˝.any fraction thereof. In a coordinate system where the t˜3 ° 

horizontal axis represents time t and the vertical axis 7. In layman’s terms, interpret li 
˜ 
m 

° 
C t˛ ˝. 

price p, draw the graph of the function p C˜ ° ˛t that t 3 

gives the cost (in dollars) of a telephone call lasting t 8. If possible, find C˜° 3 5. .˛ 
minutes, 0 < t ≤ 5. 

9. If possible, find C˜° ˛4 .  
2. Does lim C t° ˛ exist? If so, find its value. 

t˜1 5. 10. Find and graph another real-life function whose 
3. Does limC t° ˛ exist? Explain. behavior is similar to that of C t˜ °.  Label the axes 

t˜3 

appropriately and provide a brief description of your
4. Write a short paragraph on the continuity of this function. 

function. Classify all discontinuities; mention 
one-sided limits and left or right continuity where 
applicable. 
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Chapter 2 Application Project: 
The Squirrel Population Is Going Nuts 
When there is an ample food supply, ideal conditions, and no limiting factors that would curb birth rates or cause premature 
death, a population is expected to grow quickly and at an accelerating rate. An easy way to understand this is to consider the 
fact that as the population grows, there will be more and more births and, at least initially, deaths won’t affect the growth very 
much. If we examine a population over a longer time span, however, we would expect the growth rate to slow down. This may be 
due to limitations in food supply, the appearance of predators, diseases, or other factors. (You will learn more about population 
growth in Section 3.7.) 

In this project, we will examine a few patterns of population growth, discuss rates, and look at some functions that can be used 
to describe the process. 

1. a. Suppose a population of one hundred squirrels starts to grow in a large forest with unlimited food supply and no 
predators. Using the horizontal axis to represent time t in months and the vertical axis to represent the number of 
squirrels in the population, sketch by hand a possible graph depicting the population growth during the first few 
months. Explain your choice, mentioning rate of change, and how it changes over time. (Answers will vary.) 

b. Use a graphing utility to find and display the graph of a function that approximates your sketch from part a. 
reasonably well. What type of function did you use and why? (Hint: Pay attention to the scaling of the axes. You may 
want to review the common functions and function transformations from Sections 1.2 and 1.3. Answers will vary.) 

2. a. Now assume that the growth of the population in Question 1 starts slowing significantly after the first year. Sketch by 
hand a possible graph of the population growth over the first two years. Compare and contrast this new graph with the 
graph you sketched in Question 1a and explain any similarities and differences. 

b.*Like you did above in Question 1b, utilize a graphing utility to find a formula for a function that closely approximates 
your sketch for Question 2a. 

3. Write a short paragraph to argue why it is unrealistic to model the growth of a population using a curve that is increasing 
at an increasing rate on °0, ̃ ˛.  Describe the kind of graph that you think would be the better choice. 

4. a. Hand sketch a possible curve depicting the growth of a squirrel population that has grown large enough to reach 
the limit of the amount of food that the environment is able to supply. How does the rate of change vary over time? 
Explain your reasoning. 

b. How do you think the curve might change if it is to reflect the appearance of a growing predator population? 



 

 

   

   

 

   

   

   

   

   

   

The first mathematician to introduce accurate models for population growth was Pierre François Verhulst (1804–1849). He 
introduced what he called logistic curves in a series of papers starting with “Note on the law of population growth,” published 
in 1838. His work was based on studying the population growth patterns of several countries, including his native Belgium. In 
Question 5, you will be asked to examine such a logistic curve. 

Figure 1 A Logistic Curve 

5. The function below describes the growth of a squirrel population in a large, forested area; time is measured in months, the 
number of squirrels in thousands. 

90P t˜ ° ˛ ˙5t˝ e1 74 

a. Determine the limit of the function as t ˜°.  Describe in words the real-life meaning of the answer. 

b. Use a graphing utility to sketch the graph of P t˜ ° . How does its derivative change with time (i.e., as t ˜°)? 

6. The following table represents the approximate size of the US population between the years 1940 and 2020. Use the table 
to answer the questions below. 

Approximate Size of the US Population in Millions 

Year 1940 1950 1960 1970 1980 1990 2000 2010 2020 

Population (in millions) 132.2 151.3 179.3 203.2 226.5 248.7 281.4 308.7 331.4 

a. Find the average annual rate of change of the population of the US between 1950 and 2000. 

b. Estimate the annual rate of change of the US population in the year 1950. (Hint: Consider the population before and 
after 1950.) 

c. Estimate the annual rate of change of the US population in the year 2000. (See the hint given in part b.) 

d. Compare the answers you obtained in parts a.–c. What can you infer from this? How does the rate seem to change 
over time? 

e. Using the population data from the table, hand sketch a possible graph depicting the population change between 
1940 and 2020. How is your answer to part d. reflected in the graph? 

f. Based on your answers above, what are your predictions for the short-term and long-term future? 



 

    

 

  
 

  
 

  

  
  

    

    
 

  

  

     

  

   

 
 

  

Chapter 3 Conceptual Project: 
Under Pressure 
The following table shows the atmospheric pressure p at the altitude of k feet above sea level (pressure is measured in mm Hg; note 
that this unit of pressure is approximately the pressure generated by a column of mercury 1 millimeter high). 

k (ft) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 

p (mm Hg) 760 733 707 681 656 632 609 586 564 543 523 

1. Find the average rate of change of air pressure from 
sea level to 2000 feet of altitude. 

2. Find the average rate of change of air pressure between 
the altitudes of 4000 and 10,000 feet. 

3. Use a symmetric difference quotient 

p c ˜ h  p c h˝ ˛° ˛ ˝ ° 
2h 

to estimate the instantaneous rate of change of air 
pressure at 7000 ft by choosing h = 1000 ft. 

4. Tell whether you expect the answer to Question 2 or 3 
to better approximate the instantaneous rate of change 
of air pressure at altitude 7000 ft. Explain. (Hint: 
Plotting the data on paper may help.) 

5.* Explain why you expect the symmetric difference 
f c  h° ˜ f c h˝ ˛˛ ˝ ° quotient  in general to be a better 

2h 
approximation of the instantaneous rate of change 

of f at x = c than the “regular” difference quotient 
f c  h ˝ f c° ˛° ˜ ˛ . 

h 

6. Use a graphing utility to find an exponential regression 
curve to the given data and plot the curve along with 
the data on the same screen. 

7. Use the exponential function you found in Question 6 
to estimate the instantaneous rate of change of air 
pressure at 7000 ft, and compare with your estimate 
given in Question 3. 

8. Is the instantaneous rate of change increasing or 
decreasing with altitude? Explain. 



 

 
 
 
 

  

  

  

   

   

  

  

  

  

Chapter 3 Application Project: 
The Ultimate Hail Mary 
In April 2021, legendary NFL tight end Rob “Gronk” Gronkowski set a world record by catching a football that was dropped 
from a helicopter hovering 600 ft overhead. In the words of ESPN’s Adam Schefter, this was the “highest altitude catch” ever! In 
this project, we will examine the behavior of objects dropped from high altitudes. Throughout Questions 1–5, we will ignore air 
resistance; then in Questions 6–8, we will develop the tools to include it in our calculations, allowing us to make our predictions 
much more accurate. 

1. An object is dropped from the window of a hovering helicopter at an altitude of 250 ft. How long is it in the air and 
what is its speed of impact? 

2. Answer Question 1 under the assumption that the object is dropped from the same altitude from a helicopter that is 
ascending vertically with a constant speed of 16 ft s. 

3. What happens if the helicopter is accelerating vertically upward at 0 5. ft s
2  but its altitude and instantaneous upward 

velocity are the same as in Question 2 at the moment the object is dropped? Explain. 

4. Based on your answers given above, do you think the situation for Gronk would have been different if the football had 
been dropped from a vertically ascending or descending (rather than hovering) helicopter? Explain. 

5. Answer Question 1 if an object is dropped from a helicopter hovering at an altitude of 600 ft. Is your answer realistic? 
Could this have been true of the football Gronk caught? Explain. 

In order to develop a model to more accurately reflect (and predict) what happens in real-life free falls, we must consider air 
resistance. From your answers to the next questions, you will be able to better approximate the actual speed of the football when 
Gronk caught it. It was indeed a highly impressive feat! 

6. When air resistance is taken into account, does a free-falling object constantly accelerate throughout its motion? If not, 
what can you say about its acceleration and velocity? Explain. (Hint: Think of falling rain drops or snowflakes.) 

7. The resistance of the medium surrounding a moving object exerts a force directly opposing the motion. That force, 
commonly called the drag force, is obtained from the formula 

1 2F = rv C A  d d
2 

where v is the velocity and A is the cross-sectional area of the moving object, r  stands for the density of the 
surrounding medium, and Cd  is called the drag coefficient, which depends on the general shape of the object. (Note 
that A is actually the area of the cross-section perpendicular to the direction of motion. Can you see why?) 

Use Newton’s Second Law of Motion (see Topic 2 in Section 3.7) to find a formula for the maximum velocity that a 
free-falling object attains when falling in air. This is called the object’s terminal velocity. (Assume that the altitude is 
not high enough to affect air density.) 
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8. a. Use your answer to the previous question to estimate the speed of the falling football at the moment Gronk 
caught it, setting a world record. (Hint: We will assume that the ball was falling with its major axis oriented 
horizontally and approximate its cross-section as an ellipse. The formula for the area of an ellipse can be found 
in Example 3 of Section 7.4.) A football’s major and minor axes are 11 and 7 in., respectively, and its mass is 
approximately 0.9 lb. Use 0.77 for the drag coefficient of a football falling with its major axis perpendicular to 

3the direction of the fall. Use 0 075 .  lb ft  for air density. 

b. Compare the above result to your answer given in Question 5. How significant is the effect of air resistance on a 
falling football? Do you think the same would be true of a falling rock? Why? 

c. Considering your answers above, how do you think you need to modify your answers to Questions 1–4 when air 
resistance is taken into consideration? Explain. 



 

  

  

  
    

  

  

   

  

  

Chapter 4 Conceptual Project: 
Spot the Difference 
Consider a function f x˜ ° that is at least twice differentiable. In this project, you will show that the second derivative of f x˜ °  
at x = c can be found as the limit of so-called second-order differences, as follows. 

° ˙ ˛ ˆ 2 ° ˛  ° ˆ ˛f c h  f c ˙ f c h
˜̃ ° ˛ ˝ lim f c  

hˇ0 2h 

1. Instead of working with a secant line through the 2. By substituting the points ° ˜ , ° ˜ ˛˛c h f c  h , 
c f  c, c h f c  h˜ ˛ c h f c  h points ˜ ˜ °° and ° ˜ , ° ˛  like we did ˜c f  c, ˜ °° ,  and ° ˜ , ° ˜ ˛˛  into 

when approximating the first derivative, suppose that 2 x a  obtain a system of lineary a˜ x ° a ° ,
1 2 3 

°y a˜ 
1 x

2 ° a
2 x a

3 equations in unknowns a1, a2, and a3. Solve the system 
for the unknown a1.is the parabola through the following three points 

on the graph of f : c h f c  h˜ , , 3. ˜̃ ° ˛° ˜ , ° ˛˛ ˜c f  c˜ °° , and Use Questions 1 and 2 to argue that f c is the 
following limit of the second-order differences. ˜ ° . °c h f c  h, ˜ ˛˛  Do you expect to always be able to 

find coefficients a1, a2, a3 ∈ R such that the resulting ° ˙ ˛ ˆ 2 f c° ˛ ˙ f °c hˆf c h  ˛
f cparabola satisfies the desired conditions? Why or ˜̃ ° ˛ ˝ lim 

hhˇ0 2 

why not? Why would you expect 2a1 to be “close” 
to ˜̃ ° ˛f c if h is “small”? What will happen to 2a1 as 4. Use L’Hôpital’s Rule to verify the result you found in 
h → 0? Write a short paragraph answering the above Question 3.
questions. 



 

 

  

 

  

   

   

  
 

  

 

  

 

  

Chapter 4 Application Project: 
Cutting Corners with Cappuccinos 
Suppose the management of a coffee shop chain wants to minimize the daily costs associated with delivery and storage for its 
franchises. In this project, we will find a formula for accomplishing that, given certain simplifying assumptions. 

We will assume that the holding costs for a franchise are directly proportional to storage time as well as the total amount of 
unsold (whole bean or ground) coffee they have on hand. (Holding costs in general are the costs associated with storing unsold 
inventory. Some of the contributors to these expenses are the facts that the capital already invested in the inventory cannot 
earn interest elsewhere, as well as the costs of storage space, utilities, insurance, labor, damaged or spoiled items, etc.) We will 
assume that each delivery comes with a flat charge, regardless of the amount of coffee delivered. In addition, daily consumer 
demand is assumed to be constant, meaning the total amount of coffee purchased at the franchise is a linear function of time. Our 
notation will be the following. 

f = delivery fee in dollars 

a = delivery amount in pounds 

h = holdiing costs in dollars per pound per day 

c = customer demand in pounds per dayn 

t = time in days 

x = number of days between twoo successive deliveries 

1. Suppose a delivery in the amount of a0 pounds of 3. Suppose that during the first day after delivery, the 
coffee arrives at a franchise. In a coordinate system franchise’s coffee supply decreases from the initial a0 

where the horizontal axis represents time t measured pounds to a1 pounds. Explain why it is reasonable to 
in days and the vertical axis stands for the amount calculate their holding cost for the day as follows. 
A of coffee measured in pounds, sketch the graph of a

0 ° a
1A t˜ °,  the amount of coffee at the store as a function H

1 ˜ h 
2of time, from the point of delivery until the store runs 

out of supplies. What type of function is it? (Suppose (In other words, by multiplying the average daily 
delivery happens at t = 0. Be careful. Neither time, nor inventory by the holding cost per pound per day. 
the coffee amount stored, can ever be negative.) Hint: Refer to Question 1.) 

2. Using a0 and c as parameters (unspecified, but fixed 4. Now consider the first two days of the DSI cycle. 
values), answer the following questions. Assuming that there are still a2 pounds of coffee 

left at the end of the second day, use your answer to a. Find the equation of the graph you sketched in 
Question 3 to show that the total holding costs the Question 1. 
franchise incurs during the first two days of the cycle

b. Use your answer from part a. to find a formula for can be obtained as follows. 
t0, the number of days it takes for the franchise to 
run out of supplies. This length of time is called a

0 ° a2H ˜ 2h ˜ ˛a ° a h˛ ˝  ˝2 0 2days sales of inventory, or DSI in the business 2 
world. (In other words, we can again take the average 

inventory for the first two days and multiply by twice 
the daily holding cost per pound of coffee.) 



  

   

   

 

  

   

   

    

  

  

5. Generalizing the result from Question 4, answer the following questions. 

a. Find a formula for the total holding cost Ht0
 for a full DSI cycle of t0  days. (Hint: Use the fact that the amount 

stored at the endpoint of the cycle is zero pounds, and again work with the average inventory.) 

b. Find a formula for the total cost Ct0  incurred by the franchise from delivery and storage over the cycle in part a. 

The remainder of this project is devoted to finding a formula for the length of the DSI cycle that minimizes the storage-and-
delivery expenses for a franchise. Customer demand, the delivery fee, and the daily holding costs per pound will be assumed to 
be constant, but we will treat the delivery amount and the length of the DSI cycle as variables (denoted by a and x, respectively). 
As you might have discovered already from answering Questions 1–4, the delivery amount will determine the length of time 
before the next shipment becomes necessary; in other words, the two variables are strongly related. 

6. Letting a denote the amount of coffee (in pounds) delivered to the franchise and x stand for the time it takes (in days) 
for the store to run out of supplies, answer the following. 

a. Find an equation relating the variables a and x. (Hint: Refer to Question 2b.) 

b. Use your answers from Questions 5b and 6a to express the total cost C as a function of DSI cycle length; that is, find 
a formula for the function below. 

C C x˜ ° ˛  

c. Find a formula for the function D x˜ °, the average daily cost stemming from delivery and storage expenses. (Hint: 
There are x days in a DSI cycle.) 

7. Find the (positive) critical point of the daily cost function D x˜ °  of Question 6c, and use the Second Derivative Test to 
obtain a formula for the length of the DSI cycle that minimizes the daily delivery and storage-related expenses for the 
franchise. 

8. Sketch a possible graph for the daily cost function D x˜ ° . Briefly discuss the main features of the graph. 
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Chapter 5 Conceptual Project: 
Looking For a Sine 
The topic of this project is the so-called sine integral function, which is important for its applications, most notably in electrical 
engineering and signal processing. 

1. Consider the following piecewise‑defined function. 4. Without graphing first, write a short paragraph on why 
you would expect the graph of Si ˜ °x  to be oscillating. 

˙sin t Explain why its amplitude is expected to decrease as
ˇ if t ˝ 0

f t˜ ° ˛ ˆ t x →∞. 
1̌ if t ˛ 0˘ 5. Find the x‑values where the relative maxima and 

minima of Si ˜ °x  occur. Prove that for any x ≥ 0, f t˜ ° is integrable on ˜0, x° . 
6. Extend the definition of Si ˜ °x  to negative x‑values2. The sine integral function is defined as follows. 

and prove that for any a > 0, 
a 

Si x dx ˛ 0.˙˝a ˜ °  
Si x  f  t dt, for x ˝ 0˜ ° ˛ ˙0 

x 
˜ °  7. Use a graphing utility to plot the graph of Si ˜ °x  on 

the interval °˜8 8,p p˛.Prove that Si ˜ °x  is continuous. 
d 8. Use a graphing utility to approximate the range of3. Find the derivative Si ˜ °x . 
dx y ˜ Si ° ˛x  to four decimal places. 
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Chapter 5 Application Project: 
Too Math Too Furious 
When we talk about acceleration of cars (for example, when discussing times necessary to accelerate from zero to sixty miles 
per hour), we often assume their acceleration is constant. This makes it easy to perform speed and distance calculations (see 
Question 1 below). However, in real life, constant acceleration over long periods of time may not be realistic. Air resistance, an 
engine’s torque delivery, changing road conditions, and potential wheel spin can all lead to variable acceleration. Air drag alone, 
which is proportional to the square of velocity, has a strong effect on acceleration (see Question 7 of the Chapter 3 Application 
Project). For example, at the very high speeds experienced by race cars, air resistance is strong enough that simply stepping 
off the accelerator creates a sense of hitting the brakes with full force! It would therefore be realistic to expect acceleration to 
decrease at higher speeds. In this project, we will illustrate the power of integration by considering motion problems where the 
accelerating vehicles have time‑dependent (nonconstant) acceleration. We will start with an ultrafast Porsche model. 

1. The 2021 Porsche 911 Turbo S reaches 150 mph from a standstill in 13.6 seconds. In the analysis that follows, we will 
initially use the (unrealistic) simplifying assumption that acceleration is constant throughout the 0–150 mph test run. 

a. Find the presumably constant acceleration a (in ft s
2). 

b. Use antidifferentiation (as in Example 4 of Section 4.7) to find the accelerating car’s velocity v v t˜ ° ˛ as a function 
of time (in ft s ). 

c. Find an integral formula for the velocity function in part b. (Hint: Use the Fundamental Theorem of Calculus, 
Part I.) 

d. Find the distance (in feet) covered by the car during the acceleration run. 

2. The table below shows the actual acceleration times of the 2021 Porsche 911 Turbo S from zero to various speeds 
up to 150 mph. (Units are in miles per hour and seconds. As a side note, the car is actually capable of a top speed of 
205 mph!) 

2021 Porsche 911 Turbo S Acceleration Times 

Increase in 
Speed (mph) 

0–30 0–40 0–50 0–60 0–70 0–80 0–90 0–100 0–150 

Time (s) 0.9 1.4 1.8 2.3 3.0 3.7 4.5 5.6 13.6 

Source: Motor Trend 

Table 1 
a. Use the data from Table 1 to explain why the acceleration a a t˜ ° ˛ is actually a nonconstant function of time, 

rendering our simplifying assumption in Question 1 unrealistic. 

b. What features would you anticipate for the graph of a t˜ ° to possess? Describe these features, mentioning the first 
derivative and concavity. (You may want to plot a few points using data from the table.) 
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Notice that Table 1 gives us values of the Porsche’s velocity function v v t˜ ° ˛ at various points on the time axis during the 
acceleration run. We will use these values to approximate the total distance covered during the run. (Note that this is the same as 
the displacement of the car from its starting position, since there is no change of direction during this type of test run.) To start 
off, notice from Table 1 that the Porsche reaches 30 mph in the first 0.9 seconds. A crude approximation of the distance covered 
while doing so can be obtained by taking the average of the speeds at the two endpoints of this time interval, at t = 0 and t = 0.9 
(where the speeds are 0 mph and 30 mph, respectively), and assuming that the speed is constant and equal to this average value 
throughout the entire time interval. 

3. a. Use the technique described above to approximate the displacement during the first 0.9 seconds of the run, and then 
on the second time interval, from 0.9 seconds to 1.4 seconds. Add up the results to obtain an estimate for the total 
displacement during the first 1.4 seconds of the run. Express your answer in feet. 

b. Continue the process from part a. over all consecutive time intervals from Table 1 and add up the results to obtain an 
estimate for the total displacement (in feet) during the entire 0–150 mph acceleration run. What is the name of the 
sum you just formed? 

Notice that if we had more data in Table 1, we could work with shorter time intervals in order to arrive at more accurate 
estimates for displacement. Better yet, if we had a formula for v v˜ ° ˛t , we could use a definite integral to calculate the actual 
displacement, much like we did in Example 1 of Section 5.2. You can use this observation to answer Question 4. Then, in the 
subsequent problems, we will generalize our analysis. 

4. Use your work on Question 3 to give a definite integral interpretation of the total distance d traveled by the Porsche 
during its acceleration run. Find a formula in terms of v t˜ °. 

5. Suppose an object is accelerating along a straight line from t t0  to t t1  and its acceleration is given by a a˜ ° ˛= = t , 
while its velocity is v v t .˜ ° ˛  
a. Use the definite integral to give a formula for the total displacement of the object in terms of v t˜ °. 

(Hint: Generalize your answer to Question 4.) 

b. Given v t˜ °,  find an integral formula for the displacement function d t˜ ° on the interval ˜t t, .  °  (Hint: Generalize
0 1  

your answer to part a.) 

c. Use a t  ˜ ° on the interval ˜ 0 1˜ ° and integration to arrive at an integral formula for the velocity function v t  t t, .  ° 
(Hint: Generalize your answer to Question 1c.) 

d. Explain the validity of the formula you have given in part c. above. Use Riemann sums in your argument. 

6. An experimental race car starts at a standstill and accelerates in a straight line. Suppose its acceleration can be described 
2by the function a t˜ ° ˛ ˜31˝ 2t ° ft s .  

a. What is its velocity (in mph) five seconds later? 

b. How far is it from the start at that instant? 

c. Use technology to find the vehicle’s quarter‑mile time. (This means the time needed for it to run a quarter mile from 
its starting point.) 



 

 

    

  

  

  

  

  

  

  

   
 

  

  

  

  

  

  

Chapter 6 Conceptual Project: 
A Frictionless Flight 
In this project, we will expand upon our explorations from Exercises 48 through 55 of Section 6.5 (also see the discussion 
preceding those exercises). In particular, we will determine an equation satisfied by the velocity of a projectile launched with 
initial velocity v0, taking into consideration that acceleration caused by gravity decreases with altitude. (This is important when 
objects are launched to great altitudes.) We will then use our equation to find the maximum height attained by the projectile. 
This will lead us to the value of the so-called escape velocity, the velocity needed for an object to be able to overcome Earth’s 
gravitational field without further propulsion. (In turn, since gravity is conservative, this is the same velocity an object would 
achieve if pulled in by gravity from an “infinite distance.”) We are ignoring all retarding forces (such as air resistance or friction) 
in this discussion. 

1. Recall from Exercise 48 of Section 6.5 that g, the 
acceleration caused by gravity on a free-falling mass 
near Earth’s surface, is approximately 

MG g = 
2

,
R 

where M and R are the mass and radius of Earth, 
respectively, and G is the universal gravitational 
constant. However, a launched projectile’s acceleration 
caused by gravity is negative (if we are assuming the 
positive direction is upward) and actually depends 
on its height h above Earth’s surface. In particular, 
use Newton’s Law of Gravitation to show that this 
dependence is given by the equation 

˝gR 2 

a h˜ ° ˛ , 
R h°2˜ ˙ 

where a ˜ °0 ˛ ˝g,  as we would expect. (Actually, 
a h˜ ° ˛ ˝g when h is negligible compared to Earth’s 
radius.) 

2. Show that if v v˜ ° ˛h denotes the velocity of the 
projectile, then 

d 2 dv v ˛ .˜ ° 2 
dh dt 

(Hint: Use the Chain Rule.) 

3. Use the above results to show that 
2d v 2˜ °

˛
˝2gR 

. 
dh R h  

2˜ ˙ ° 

4. Integrating both sides of the preceding equation with 
respect to h, show that v v h˜ ° ˛ satisfies the equation 

2 2 ˝ R ˇ v ˜ v
0 ° 2gRˆ1° �. 

˙ R h  ˘˛ 

(Hint: After integrating, use the fact that v˜ °0 ˛ v
0
.) 

5. Use the equation found in Question 4 to find the 
maximum height attained by the projectile. 
(Hint: Use the fact that v = 0 when the projectile 
reaches its maximum height.) 

6. Find a formula for the escape velocity ve of the 
projectile; then use the data found in the exercises 
of Section 6.5 (Exercises 48-55 and the preceding 
discussion) to express your answer in kilometers per 
second. (Hint: Use the fact that if v0 = ve, the projectile 
will “travel to infinity.”) 

7. Find the escape velocity of the projectile if it is 
launched on the moon. (Hint: For moon data, see 
Exercise 53 of Section 6.5.) 



 

 

 

 

 

 

  

  

   

   

   

  

  

  

  

Chapter 6 Application Project: 
3 Calculations to Blast Off! 
In this project, we will examine the motion of a rocket after launch. As you know, a rocket is propelled by the force caused by 
the exiting hot gases that result from rapidly burning fuel. This force is called the thrust of the rocket. The difficulty of analyzing 
rocket propulsion arises from the fact that the mass of the fuel, which comprises a large portion of the rocket’s mass, decreases 
rapidly during flight due to the high rate of fuel burn. This rapid decrease in mass occurs up until the moment when all fuel is 
used up (a moment known as the burnout point). This means that the net force acting on the rocket is also a nonconstant function 
of time but, as you will discover, integration helps us overcome the challenge of rapidly changing mass. Throughout the project, 
we will ignore air resistance and assume that the acceleration caused by gravity g ≈ 9 81. m s 2  is constant (in the case of rockets 
that fly to high altitudes, this is not necessarily the case). 

Under the above assumptions, we use Newton’s Second Law of Motion to obtain the following equation: 

F t  F t˜ ° ˝m t g m t a t˜ °  ˜ ° , (1)n ˜ ° ˛ t ˜ °  ˛ 

where Ft denotes the propelling force or thrust. This force arises from the fact that the mass of the burnt fuel is rapidly leaving 
the rocket-fuel system, thus giving it upward momentum. 

Although we omit the details of deriving it here, we will also use the fact that the thrust can be obtained as the product of v f , 
the relative speed at which the burnt fuel is exiting the rocket, and the rate of decrease in mass: 

dm ˜ °t
F t˜ ° ˛ v ˝ .t f dt 

1. Suppose a rocket of mass eighteen metric tons is fired 3. Use Equation (1) to find the rocket’s velocity function 
vertically upward. Of its total mass, fuel accounts v t˜ ° ,  as follows. From Equation (1), we obtain 
for twelve metric tons. The hot gases resulting from 

dv ̃ °t dm ˜ °tburned fuel are leaving the rocket at a relative speed of m t a t  m t˜ ° ˝ ˛ v f ˝ ˙m t˜ °  ˜ ° ˛ ˜ ° g;
dt dt2500 meters per second and at a rate of 150 kilograms 

per second. Calculate the thrust Ft  propelling the then we use differential notation to arrive at 
rocket upward. 

mdv v˜ f dm ° mgdt.2. Use Equation (1) to calculate the net force Fn  acting 
on the rocket Use this equation to solve for dv,  and then obtain 
a. at the moment of blastoff; v t˜ ° by integration: 

b. just before all fuel burns away; t 
v t˜ ° ˛ ˝ dv. 

c. after all fuel has burnt away. 
0 

4. Use your answer to Question 3 to find the terminal 
velocity of the rocket after all fuel has been used up. 
(Hint: Be careful. The velocity of the exiting fuel is 
negative.) 
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Chapter 7 Conceptual Project: 
Infnite Wisdom 
In this project, we will derive a famous infinite product named after its discoverer, the English mathematician John Wallis 
(1616–1703). Wallis introduced the symbol ∞ for infinity, and in turn he used 1 ∞  to denote an infinitesimal quantity. He 
contributed to the development of infinitesimal calculus (it wasn’t until the 19th century that infinitesimals were replaced by limits 
in the works of Bolzano, Cauchy, and Weierstrass). 

1. For a nonnegative integer n, let 6. Show that 
p 2 p 2 n I n˜ 12 1 ˛ °I n ˜ sin n x dx ˜ cos x dx. 1 . ° ° 0 0 I n° 2n

2 1  

Find I0, I1, I2, and I3. 7. Prove the inequalities 
2. Show that if n ≥ 2, I ˛ I ˛ I .

2 1n˜ 2n 2n°1 
n °1I ˜ I .n n°2 (Hint: Use the definition of I  from Question 1 and n n 

compare the integrands.)(Hint: See Exercise 81 of Section 7.1.) 

8. Use Questions 6 and 7 to show that3. Use Questions 1 and 2 to find I4, I5, I6, and I7. 
I 1

4. Show that in general, 1˜ 2n ˜ 1° ,
I

2 1  2nn° 

2n °1 2n °3 2n °5 1 pI n ˜ ˛ ˛  and use this observation to prove that
2 ˛ ˛ ˛ , 

2n 2n ° 2 2n ° 4 2 2  I
2nwhile lim ˝1. 

n˜° I
2 1  

2n 2n ̋ 2 2n ̋ 4 2 n˛ 

I
2 1  ° ˛ ˛ ˛ ˛ .n˜ n ̃  2 1n ̋  2n ̋ 3 32 1  9. Use your answers to the previous questions to derive

(Hint: Observe a pattern or use induction.) Wallis’ product, as follows. 
25. Use Question 4 to show that p 2 4

2 2 ° ° ˛ ˝2n
˜ lim 

2 ˇ˘ 2 22 2 ˛ ˛ ˙2n ̋ 1 2n 1 2 n 3 5  ° ° ˛2n ̇ 1˝2

1˝I
2n 3 5  ˆ ˙ ˜ ˆ p ˛2n ̂  

° ˛ 
2 2I n˜ 2 4 ˛ ˛ 2n 2

2
2 1   ˙ ˆ  

holds for all n. 
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Chapter 7 Application Project: 
Speeding Up to Slow Down 
Though often overlooked by nonenthusiasts, one of the most important characteristics of a car’s engine is the torque it generates, 
and subsequently, its distribution across the rpm range. A graph of the torque an engine produces, as a function of rpm, is referred 
to as the engine’s torque curve. In this project, we will investigate the effect of the torque curve on a car’s power, especially on 
its performance in stop-and-go city driving. 

In physics texts, torque is introduced as the measure of a force’s ability to rotate an object about an axis. Specifically, when a 
force is rotating a mass or a rigid body around an axis, its torque equals the product of the force and the perpendicular distance 
of its line of action from the axis of rotation. (We will give a precise definition in Section 11.4.) In automotive technology, 
torque is the measure of the engine’s ability to rotate the driveshaft, and ultimately, the drive wheels. It is responsible for a car’s 
acceleration and, simply put, torque is what you feel when stepping on the accelerator pedal. 

As you would expect, the engine’s torque rating is strongly connected to the car’s power, which is measured in horsepower (hp) 
or kilowatts (kW). We will first explore this relationship, then examine how the shape of the torque curve influences acceleration 
and driving feel, and later we will use integration to calculate the total energy required to accelerate a car. 

In general, power is defined as the instantaneous rate at which work is done, given by the following formula. 
dWP = (1)
dt 

Since we can think of work as the transfer of energy (usually denoted by E), an alternative equation for power is as follows. 
dEP = (1a)
dt 

Though we will not derive it here, the (instantaneous) power of an automotive engine with a torque output of t is given by the 
following equation. 

P ˜ °  (2) 

The value of w is the angular velocity of the driveshaft, calculated as follows, where q is the angle of rotation of the driveshaft 
in radians. 

˜ = 
d° 
dt 

1. If P t˜ ° denotes the power output of an engine as 2. a. Given that angular velocity is measured in radians 
a function of time, use Equation (1) above to show per second, and that rpm expresses the number of full 
that the total work done by the engine in accelerating revolutions per minute, find the conversion factor 
the car from t t0 =  to t t= 1  can be obtained from the between angular velocity and rpm. In other words, what 
subsequent formula. angular velocity (in rad s) corresponds to 1 rpm? 

W ˜ ˝
t1 P ° ˛t dt 
t0 

b. Suppose an engine’s torque output is T lb-ft. when 
the engine speed is N rpm. Use Equation (2) and your 
answer to part a. to express the engine’s power P in 
lb-ft s  at that instant. 
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c. Given that 1 horsepower (hp) equals 550 lb-ft s ,  use your answer to part b. to verify the given formula. 

torque° rpm 
power ˜ 

5252 

Power in the above formula is measured in hp, while torque is measured in lb-ft. However, in general, power is most 
often expressed using the metric system, in watts (W) or kilowatts (kW). One watt of power performs one joule of 
work in one second, demonstrated as follows. 

J m
2 

1 W ˜ 1 ˜ 1 kg ° 
3 

s s 

1When referring to automotive power, we note that since 1 watt approximately equals 
746

 horsepower, we obtain the 
following conversions between units. 

1 hp = 746 W = . kW0 746 

3. Suppose the graphs in Figure 1 show the torque and power curves of the 2015 and 2021 Brand X car models, 
respectively. Examine the curves and answer the questions below. 

200 200 200 hp200 hp
lb-ft lb-ft 

175 175 175 hp175 hp 
lb-ftlb-ft 

150 150 150 hp150 hp lb-ftlb-ft 

125 125 125 hp125 hp 
lb-ftlb-ft 

100 100 100 hp100 hp lb-ftlb-ft 

75  75 75 hp75 hp lb-ftlb-ft 

5050 50 hp50 hp lb-ftlb-ft 

2525 25 hp25 hp lb-ftlb-ft 

Torque 

Power 

Torque 

Power 

1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000 
Engine Speed (rpm) Engine Speed (rpm) 

(a) 2015 Brand X Car Model (b) 2021 Brand X Car Model 

Figure 1 Torque and Power Curves of Two Brand X Car Models 

a. Notice that in both graphs of Figure 1, the power curve intersects the torque curve at 5252 rpm. Is that a 
coincidence? Explain. 

b. Use Figure 1a as well as the formula you obtained in Question 2c to estimate the horsepower range generated by the 
2015 car’s engine when the engine is revved from 2000 to 3500 rpm. (Answers will be approximate. Note that this 
is a typical rpm range in city traffic. Also notice how different your answer is from the “peak horsepower” rating 
typically advertised for consumers!) 

c. Repeat part b. for the 2021 edition of the car. 

d. From your answers above, which car would you expect to have better acceleration in typical city driving conditions? 

e. Summarize your findings in this problem by explaining why having a “flat” torque curve (as in the second 
illustration above) is advantageous in city driving. (This is typical with certain turbocharged or large displacement 
engines.) 



  

  

   

    

   

  

  

  

  

  

  

 
  

   

   

' " - - -" 
'- - - -

- - -' -~ "' ' ' -- ' I\.. ' ..... 
... '-- " -- - .. - _.,.._ 

" ~ ..... ... ....... '-
I, ~ - - --. ~ .... 

,# ~ ' ... - ' 
, 
~ ~-

~ -- ... ' ...... - --, i, - ...... c- ...... .... - -r ~ .... ... - - -' 
, ...... - - ~ , , -- -/ - - ... 

~ 
, 

... .. -

4. Suppose a certain car’s torque curve can be 
approximated by the function 

xT x˜ ° ˛ 200sin 
3000 

on the interval ˜0,6500° ,  where the independent 
variable x stands for rpm. 

a. Find a formula for the power function P x˜ ° (i.e., 
the horsepower as a function of engine speed) on 
the same interval. 

b. Use a graphing utility to graph the functions T x˜ °  
and P x˜ ° on the interval ˜500,6500° . 

c. Suppose we accelerate the car (without shifting 
gears) from 0 to 4000 rpm in 4 seconds. Assuming 
that the rate of change of the engine speed is 
constant, use your answer from part a. to express 
the engine’s output in hp as a function of time 
(in seconds) during the acceleration (i.e., find the 
formula for P t˜ ° ). 

d. Convert your answer in part c. to kilowatts to obtain 
a formula for the engine’s output in kilowatts as a 
function of time. Then use integration by parts to find 
the total work done by the engine, in kilojoules, during 
this acceleration run. (Hint: Use the formula from 
Question 1.) 

5. a. Suppose we accelerate the 2015 Brand X car model 
from 1000 rpm to 3500 rpm in 5 seconds, without 
changing gears and while keeping the rate of change 
of engine speed constant. Use the Trapezoidal Rule 
and Figure 1a to estimate the work done by the engine. 
Express your answer in kilojoules. (Answers will be 
approximate.) 

b. Repeat part a. above for the 2021 Brand X car model, 
using Figure 1b. 

c. Explain why car performance enthusiasts and tuners 
often refer to torque or power curves by exclaiming, “I 
want as much area under the curve as possible.” 

d. From your answers above, as well as those given to 
Question 3, would you prefer a “flat” or a “peaky” 
torque curve for city driving? Why? (There are no 
right or wrong answers.) 

6. Figure 2 shows the torque and performance curves of various Tesla models. 
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Figure 2 Torque and Power Curves of Various Tesla Models 
Source: Dr. Grzegorz Sieklucki, “An Investigation into the Induction Motor of Tesla Model S Vehicle” 

a. By visually examining the Tesla torque curves, explain the fundamental difference between them and those we 
discussed above. 

b. Based upon your observations about the graphs, explain why most electric cars have impressive acceleration in stop-
and-go city traffic. 



 

 

  

 

   

  

   

  

  

      

 

  
 
 

   

Chapter 8 Conceptual Project: 
Creating a New Element 
Recall from Section 3.7 our discussion of a chemical reaction where reactants A and B produce a new product substance C, 
a process represented by 

A B  C.˜ °  

In this project, we will derive and use a differential equation that describes such a process. 

1. Suppose that in the above reaction for each gram of 
reactant A, b grams of B are used to form C. If we 
start with initial amounts A0 and B0, respectively, and 
X t˜ ° denotes in grams the amount of substance C 

already formed at time t, find the remaining amounts 
of reactants A and B at any time during the process. 

2. Given that the rate of formation of substance C at any 
time is proportional to the product of the remaining 
amounts of reactants A and B, respectively, find a 
differential equation in terms of X t˜ ° that describes 
the process. 

(As in Question 1, let A0 and B0 stand for the initial 
amounts.) 

3. Suppose a product substance C is being formed from 
reactant substances A and B and that for each gram 
of substance A, 3 grams of B are used to form C. 
As in Question 1, let X t˜ ° denote the amount of C 
formed at time t, and assume that the initial amounts of 
reactants A and B are A0 = 60 grams and B0 = 40 grams, 
respectively. Find the initial value problem describing 
this reaction. (Hint: Use your answer to Question 2.) 

4. If 20 grams of the product compound form during 
the first 5 minutes, use the model you obtained in 
Question 3 to predict how much of the product 
compound C is present 10 minutes into the process. 

5. Use your model from Question 3 to predict what 
happens as t ˜°.  Interpret your answer. 
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Chapter 8 Application Project: 
A Sturdy Foundation 
On November 7, 1940, the original Tacoma Narrows Bridge spectacularly collapsed under the sustained effect of strong and 
rhythmic wind forces. This stunning disaster was the result of what was then a poorly studied phenomenon called aeroelastic 
flutter caused by undamped periodic forces; its effect is closely related to what is called forced mechanical resonance. 

Resonance might happen when a periodic external force is acting on an oscillating system. In this project, we will examine some 
conditions under which the phenomenon might occur, with the assumption that no damping forces are present. Such motion is 
called forced undamped motion. 

1. The following initial value problem represents a 
spring-mass system where the oscillating mass m is 
acted upon by an external force as well as the restoring 
force of the spring it is attached to. In addition to k (the 
usual spring constant), f is also a constant. 

2d ym ˜ ky ° f sin  qt ; y ˛ ˝0 ° 0; y˙ 0 ° 0˛ ˝  ˛ ˝
dt 2 

a. Compare the above IVP to that in Example 4 of 
Section 8.4 and describe any differences. Relate 
any mathematical differences to the forces acting 
on the oscillating mass. 

b. In words, describe why you would expect a major 
difference in the motion of a spring-mass system 
described by the above IVP, in contrast with 
Example 4 of Section 8.4. Are there any damping 
forces present? 

c. Find the period and frequency of the expression on 
the right-hand side of the differential equation. 

2. a. Find the general solution y t˜ ° of the associatedc 

homogeneous equation in the IVP above. Use the 
conventional notation w = k m. 

b. Starting with y t˜ °  A ˜ °t Bsin ̃ °q  as thep ˛ cos q ˝ t 
initial guess, find a particular solution y p  of the 
differential equation in Question 1. (Hint: See 
Exercises 39–44 and the preceding discussion in 
Section 8.4.) 

c. Use your answers to parts a. and b. as well as the 
initial conditions to find the solution y t˜ ° to the 
initial value problem of Question 1. 

3. Find the formula for Y t˜ ° ˛ lim y t˜ °.  (Hint: Use 
˝

L’Hôpital’s Rule.) 
˜ °  

4. a. Use the formula for Y t˜ ° that you obtained in 
Question 3 to examine lim Y t˛ ˝  ,  and describe 

t˜° 

what happens to the amplitude of the oscillations 
when ˜ ° and t increases without bound.= 

b. Use technology to obtain a graph that illustrates 
the behavior of Y t˜ ° as t ˜°.  (Choose your own 
values for the unspecified parameters. Answers will 
vary.) 

c. Use your answer to Question 4a (along with a 
limit argument) to explain the physical effect of q 
approaching w in this type of forced, undamped 
oscillating motion. 

5. Your work on Question 4 and the answers you found 
provide mathematical insights into the physical 
phenomenon called resonance. This will occur in 
lightly damped or undamped systems when the 
frequency of the external driving force approaches the 
oscillating system’s natural frequency, that is, when 
˜ → °.  Use your results to write a short paragraph 
explaining this phenomenon. 

6.* There is actually a direct way to obtain Y t˜ °,  that is, 
by finding the solution of the following initial value 
problem. 

2d y  ˛ k ˆ 
m ˜ ky ° f sin  t ; y 0 ° 0; y� 0 ° 0 
dt 2 ˙̇ m ˘̆ � �  � �  

˝ ˇ 

Find the solution of the IVP above to verify the 
formula for Y t˜ ° you obtained in Question 3b. 
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Chapter 9 Conceptual Project: 
Curve Control 
In this project, you will be introduced to a class of parametric curves called Bézier curves. They are important for their 
applications in engineering, computer graphics, and animation. This class of curves is named after Pierre Bézier (1910–1999), 
a design engineer for the French automaker Renault, who first demonstrated these curves’ use in designing automobile bodies 
in the 1960s. The design advantage of Bézier curves lies in the fact that they can easily be manipulated by moving around their 
so-called control points. In addition, it is easy to smoothly join together several Bézier curves for more complicated shapes. 

˜ ° from P a b1. The linear Bézier curve B
0 1, t 0 ˜ 0

, 
0 °  to 

P a b
1 ˜ 1

, 
1 °  is simply the line segment connecting the 

two points (note that P0 and P1 are the only control 
points in this case). Verify that this curve can be 
parametrized as 

˜ t P
0

B
0 1, ˜ °t ˛ ˝1 ° ˙ tP

1
, t ̂ ˇ0,1˘, 

and find x t˜ ° and y t˜ ° corresponding to this 
parametrization. (In this and subsequent questions, 
control points will be labeled P a˜ ,b ° , 0 ˛ ˛i 3.)i i i 

2. The Bézier curve B
0 1 2 ˜ °t  with control points P0, P1,, ,  

and P2 is a quadratic curve joining the points P0 and 
P2 in such a way that both line segments P P  and

0 1  

PP  are tangent to B 
, ,  ˜ °t .  Intuitively speaking, this

1 2  0 1 2 

means that the curve starts out at P0 in the direction 
of P1 and arrives at P2 from the direction of P1 (see 
Figure 1). 

Find x t˜ ° and y t˜ ° corresponding to the 
parametrization 

B ˜ °t ˛ ˝1 ° t tB ˜ ° , t˜ t B  ˜ ° ˙ t ˆˇ0,1˘, ,0 1 2 

and verify that B
0 1 2 

above. 
, ,  

0 1, 1 2, 

˜ °t  satisfies the conditions stated 

P1 

P2 

P0 

Figure 1 A Quadratic Bézier Curve 

3. The cubic Bézier curve B
0 1 2 3 ˜ °t  with control points

, ,  , 

P0, P1, P2, and P3 joins P0 and P3 so that the line 
segments P P  and P P  are tangent to B

0 1 2 3 ˜ °t  at
0 1  2 3  , , , 

P0 and P3, respectively (see Figure 2). Verify that the 
following curve satisfies these conditions. 

2 3x t˜ ° ˛ a ˜1˝ t °3 

˙ 3a ˜1˝ t °2 t ˙ 3a ˜1˝ t t° ˙ a t
0 1 2 3 

2 3y t  b ˜1˝ t b ˜1˝ t t ˙ b 1 ° ˙ b t tˆˇ , ˘˜ ° ˛ °3 

˙ 3 °2

3 ˜ ˝ t t , 0 1
0 1 2 3 

P1 

P0 P3 

P2 

Figure 2 A Cubic Bézier Curve 

4. Show that the parametrization in Question 3 
corresponds to 

B t 1 t B  t tB t .
0 1 2 3 ˜ ° ˛ ˝˜ 0 1, ,2 1,2 3, ˜ °, ,  , ° ˜ ° ˙ 

5. Use Question 3 to verify that the Bézier curve with 
control points P ˜1 3, ,° P ˜3 7, ,° P ˜6 9, ,°  and

0 1 2 

P
3 ˜8 6, °  has the following parametrization. 

3 2
6 1x t˜ ° ˛ ˝2t ˙ 3t ˙ t ˙ 

3 2y t˜ ° ˛ ˝3t ˝ 6t ˙12t ˙ 3 

6. Find the slope of the curve in Question 5 at 
1a. t = 0, b. t = 
2
,  and c. t = 1. 

7. Use a computer algebra system to graph the Bézier 
curve of Question 5 along with its control points. If 
your CAS has animation capabilities, explore what 
happens if you move around the control points in the 
plane. 
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Chapter 9 Application Project: 
Keeping Time Is Timeless 
In this project, we will examine a pendulum that uses the solution of the tautochrone problem discussed in Section 9.1. Such 
a pendulum was invented as early as 1657 by the Dutch mathematician, physicist, and astronomer Christiaan Huygens (1629– 
1695). Huygens was interested in developing accurate clocks, and thus needed a pendulum whose period of oscillation was 
independent of amplitude (i.e., unaffected by the initial position of the pendulum bob when released to swing freely). Huygens’ 
work, Horologium Oscillatorium (published in 1673) as well as his numerous other groundbreaking findings in various areas of 
mathematics, physics, engineering, and astronomy, are a testament to his brilliance and creativity. We will analyze his invention 
by appropriately modifying the parametric equations of the cycloid introduced in Example 4 of Section 9.1. 

1. a. Sketch the inverted cycloid traced out by a point P a. Given that the length of the cord is equal to 
on a circle of radius a that rolls counterclockwise 4a, where does the bob touch the cycloid at the 
along the line y = 2a assuming that P starts out pendulum’s most extreme positions? That is, 
at ˜0 2, a° . (The circle is positioned between the what is the location of the bob when the cord 
x-axis and y = 2a Show the path traced out by P is completely wrapped around the cycloid? 
after two full revolutions; that is, sketch the cycloid (Hint: See Example 7 in Section 9.2.) 
on the parametric interval 0 ≤ ≤ 4˜ °. b. Note that while the pendulum is moving, the “free” 

b. Make a sketch to show the inverted cycloid of part of the cord (the portion that is not wrapped 
part a. on the parametric interval ° .˜ ° ˜ around the cycloid) is tangent to the cycloid. Let 

Q denote the point of tangency (see Figure 1), and2. a. Find the parametric equations of the inverted 
suppose that Q corresponds to the parameter valuecycloid (henceforth referred to simply as cycloid) 
q

0
.  Find the length s of the portion of the cordin Question 1. 

that is wrapped around the cycloid under these
b. Use technology to reproduce the graph you conditions. (Hint: Make a detailed sketch and 

sketched in Question 1b. consider the angle that the tangent of the cycloid 
forms with the x-axis. See Exercise 71 in Section3. Now, suppose we create a pendulum by attaching a 
9.2.)cord of length 4a to the cusp located at ˜0 2, a°  of the 

cycloid of Question 1b, and let the bob swing left and 4. a. Use your work on Question 3b to obtain a 
right, partially wrapping the cord around the cycloid in parametrization of the path traced out by the bob 
the process (see Figure 1). of the pendulum. (Hint: First find x and y in terms 

Q 

Figure 1 Cycloidal Pendulum 
Source: Wolfram Demonstrations Project 

of q and s; then eliminate s by making use of the 
formula you found in Question 3b.) 

b. What kind of parametric curve have you obtained 
in part a.? Use your answer to conclude that the 
cycloidal pendulum is tautochronous; that is, its 
period of oscillation is independent of amplitude. 
(See the discussion and derivation under Topic 2 in 
Section 9.1.) 
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Chapter 10 Conceptual Project: 
Working in Harmony 
In this project, we are going to expand on our earlier work with the harmonic series. In the process, we will meet a famous constant 
called Euler’s constant, also known as the Euler-Mascheroni constant. (This number is not to be confused with e ≈ 2.71828, the 
natural base, which is also known as Euler’s number.) 

1. As in Example 6 of Section 10.2, we let sn stand for the 
nth partial sum of the harmonic series; that is, 

1 1 sn ˜ ° ° °1 . 
2 n 

(The partial sum sn is also called the nth harmonic 
number.) For each n ≥ 1, we define 

dn ˜ sn ° ln n. 

Prove that dn > 0 for any positive integer n. 
(Hint: Refer to the illustration provided for 
Exercise 65 of Section 10.2, and start by comparing sn 

n˛1

with ˜1 x d° x.)
1̋

2. Prove that ˜ ° is a decreasing sequence.dn 
(Hint: Referring again to the figure from Exercise 65 
of Section 10.2, fix an n and identify a region whose 
area is d dn°1

.)n ˜ 

3. Use an appropriate theorem from the text to show 
that the sequence dn˜ °  is convergent. Letting 
g ˜ lim ,  this limit is called Euler’s constant.d 

n°˛ n 

It is important in many applications throughout 
various areas of mathematics, and like other famous 
constants (including p and e) can be approximated 
with great precision using modern computing power. 
Surprisingly, however, it is not yet known whether g is 
rational or irrational! 

4. Use the convergence of dn˜ ° to prove that the 

sequence an ˜° 
2n 1 converges and find its limit. 
i n i˜ 

5. Use a computer algebra system to approximate g, 
accurate to the first 10 decimal places. 

6. Use the approximate value of g found in Question 5 
to estimate sn, rounded to 5 decimal places, for 
a. n = 10,000 and b. n = 2,000,000. Compare the latter 
estimate with the answer for Exercise 125b of the 
Chapter 10 Review. 



 

 
 
 

  

   
       

                      

   

 
     

                 

   

                                          

  

Chapter 10 Application Project: 
A Spoonful of Sugar 
In this project, you will build a model that sheds light on the mathematics behind medicine dosage. Your knowledge of sequences 
and exponential decay will be essential for this work. It is important to note, however, that pharmacology is a complicated science, 
and numerous factors are taken into consideration when actual drug dosage for the treatment of a particular condition is determined. 
The model in this project, while it illustrates the basic ideas behind drug dosage, should not be used in real-life situations. 

1. Clinical experiments have shown that the concentration C t˜ ° of a drug in the bloodstream decays at a rate proportional 
to the instantaneous level of concentration. 

a. Using k for the constant of proportionality and assuming an initial level of concentration C ̃ °0 ˛ D,  set up an initial 
value problem to find C t˜ °.  Assume t is measured in hours. 

b. Solve your initial value problem to find a formula for C t˜ °. 

2. a. Starting with a concentration level of C ̃ °0 ˛ D,  another dose is administered after a dosage period of p hours that 
raises the concentration level by D. Construct a formula for the level of concentration just before the new dose is 
administered, and denote it by C

1
. The reason for this naming convention is that this is the concentration level just 

before the first so-called maintenance dose is administered. Note, however, that in practice the initial, so-called 
loading dose, and the maintenance dose are usually different. (Hint: Note that C1 ˜ C ° ˛p .) 

b. After yet another period of p hours, the same dosage D is administered again. Find the level of concentration just 
before this second maintenance dose and denote it by C

2
. 

3. Iterating the process in Question 2, find a formula for C n ≥ 2.n ,  (Hint: Use the formula for the sum of a finite sequence.) 

4. Find C ˜ limC  to determine the long-term concentration after many repeated doses. 
n°˛ n 
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The minimum concentration at which a drug is effective is often abbreviated as MEC (for minimum effective concentration). 
In this project, we will denote that concentration by me .  On the other extreme, above a certain concentration level, a drug 
will typically cause unwanted side effects and is said to be toxic. This concentration level is often referred to as the MTC (for 
minimum toxic concentration), and we will denote it by mt .  The interval ˜m me , t °  is called the therapeutic window. In order for 
a given drug to work, that is, to achieve the desired therapeutic effects without causing harm, we need to keep its concentration 
level in this interval. 

Now suppose we want to prescribe a dosage amount with an optimal dosage period that keeps the drug concentration within 
the therapeutic window for the duration of treatment. One possible approach is to try to maximize the time between subsequent 
doses for the patient’s convenience. In order to achieve that, we administer a loading dose that raises the concentration level 
to just below mt ,  the top of the therapeutic window. Then we wait until the concentration drops down to me  and administer 
a maintenance dose that raises the concentration by D ˜ m ° m  to bring the concentration level back to (near) mt .  In otherm t e 

words, the goal is to achieve a long-term concentration C m= e  with repeated maintenance doses Dm .  In Question 5, we will 
determine the dosage interval to achieve this. 

5. Substitute C m and D m  m into the formula you obtained for C in your answer to Question 4, and then solve= ˜ ° e t e 

for p to obtain a formula for the optimal dosage interval. 

6. Suppose that a certain medication’s therapeutic window ranges from a concentration of 150 nanograms per milliliter 
(ng mL)  to 600 ng mL  and that its half-life is 12 hours. Suppose one tablet raises the concentration by 150 ng mL. 
(A nanogram is one-billionth of a gram.) 

a. What loading dose of this drug would your model recommend? 

b. Based on your work on Question 5, what would be the optimal dosage and dosage interval for this drug? 
(Hint: Recall the definition of half-life from Exercises 66–67 in Section 1.2.) 
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