Chapter 1 Conceptual Project:
Minding the Hole in the Ozone Layer

As time goes on, there is increasing awareness, controversy, and legislation
regarding the ozone layer and other environmental issues. The hole in the ozone
layer over the South Pole disappears and reappears in a cyclical manner annually.
Suppose that over a particular stretch of time the hole is assumed to be circular
with a radius growing at a constant rate of 2.6 kilometers per hour.

1. Assuming that ¢ is measured in hours, that =0

corresponds to the start of the annual growth of the Figure 1
hole, and that the radius of the hole is initially 0, write Source: NASA
the radius as a function of time, z. Denote this function

by r (t ) 5. What are the radius and area after 3 hours?

. . . After 5.5 hours?
2. Use function composition to write the area of the

hole as a function of time, ¢. Denote this function by 6. What is the average rate of change of the area from
A(t). Sketch the graph of A(z) and label the axes 3 hours to 5.5 hours?
appropriately.
7. What is the average rate of change of the area from
3. After finding A4(1), the area of the ozone hole at the 5.5 hours to 8 hours?
end of the first hour, determine the time necessary for
this area to double. How much additional time does it 8. Is the average rate of change of the area increasing or
take to reach three times the initial area? decreasing as time passes?
4. Are the two time intervals you found in Question 3 9. What flaws do you see with this model? Can you think
equal? If not, which one is greater? Explain your of a better approach to modeling the growth of the
finding. (Use a comparison of some basic functions ozone hole?

discussed in Section 1.2 in your explanation.)



Chapter 1 Application Project:

Pandemic Predictions J/

The emergence of the SARS-CoV-2 virus in late 2019 and its subsequent rapid global spread changed the world as we know
it. The World Health Organization declared the spread to be a pandemic, known as Covid-19, in March 2020, recommending
precautions such as cleanliness, social distancing, and the use of face masks. Mathematics in general, and functions in particular,
provide us with the tools to build models that help us understand the spread of contagious diseases and the nature of epidemics
or pandemics. This project will provide an introduction to the way such models can be built. Good mathematical models can
not only help us understand how an epidemic or pandemic runs its course, but can also be used in decision making regarding
mitigation measures and allocation of resources in order to save lives!

Covid-19 was of particular concern early on when there were  Further, we will partition the campus population into the
no vaccines available and the overwhelming majority of the following three subsets:

population had not yet been exposed to the virus, making them
susceptible to it. In this project, we will build a rudimentary
mathematical model to describe and understand the spread of
the disease on a college campus of 25,000 students, with the *  Recovered, meaning those students who cannot be
following simplifying assumptions. reinfected (due to our simplifying assumptions)
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Figure 1 The Covid-19 Pandemic in the United States, January 2020 to September 2022
Source: Google COVID-19 Open Data (goo.gle/covid-19-open-data)

» Infected, meaning those students carrying the virus
(with or without symptoms)

*  Susceptible, meaning those who have not yet had the

Anyone catching the disease eventually recovers. : : ; )
virus and can still potentially get it

After recovery, any affected individual becomes
immune (i.e., we will assume there are no
reinfections).

Note that the sizes of these sets depend on time—that is, they
are functions of time—while at any moment in time, they
always add up to the total of 25,000 students. We will denote

There are no vaccines yet available. these subsets of people by P,, P,, and P, respectively.



http://goo.gle/covid-19-open-data
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1. Figure 2 illustrates how the size of the infected 2. How would you expect the number of susceptible
subpopulation P, may depend on time ¢. students to change over time? Explain and sketch a
possible graph of the size of P_over time.

3. Answer Question 2 and sketch a possible graph for the
recovered subpopulation P..

Figure 2
Possible Graph of the Number of Infected Students over Time

a. What are the independent and dependent variables
of this function?

b. Use the features of the graph to explain why it
seems realistic. What does it tell you about the way
the infection runs its course on campus?

c. Use function notation to write an equation
expressing the fact that the numbers of infected,
recovered, and susceptible student populations sum
up to 25,000 at any given time. (Hint: remember
that P, P, and P_are functions of time t.)

Throughout the Covid-19 pandemic, the daily reports included (among other data) the number of new cases on a given day.
Note that this is an important measure of how fast the infection spreads. In other words, using the general concept of “rate”
being “change divided by time,” you can think of that number as the rate of increase in size of the set of people who have caught
the disease. (You will learn more about rates starting in Chapter 2.) Throughout the next few questions, we are going to build an
equation modeling the progression of the disease in the college population. Our assumptions will be as follows. New infections
are always the result of interactions between members of the infected and susceptible populations. Even though not all interactions
result in new infections, a certain percentage of them do (note that this percentage can be decreased by mitigation measures, such as
masking or distancing). We will assume that the number of interactions is directly proportional to both P and P,.

4. Find a formula for N(f), the number of daily new 6. a. Given that some students get infected while others

infections, given the assumptions above. (The constant
of proportionality in this case is called the transmission
coefficient. Let us denote it by b.)

. Given that, on average, an infected person is

contagious for about ten days, explain why we can
F (1)
10

Discuss the limitations of this model.

expect approximately students to recover daily.

recover every single day, use your answers to
Questions 4 and 5 to find a formula for E (1), the
daily increase in numbers of the infected student
population.

b. Use your formula to predict the number of new
infections on a day when 500 students are carrying
the virus and 1000 have already recovered. Use the
value b = 0.000025 for the transmission coefficient.

7. Use the equation obtained in Question 6 to predict

the size of the susceptible population (i.e., those who
have not caught the virus) when the epidemic peaks
on campus. (Hint: Find what value of P, predicts a
zero daily increase in P, for the first time. Round to the
nearest integer. Then check that the following day, the
predicted daily increase in P, is negative.)



Chapter 2 Conceptual Project:
Before Unlimited Calls

Some years ago, it was common for long-distance phone companies to charge their customers in one-minute increments.
In other words, the company charges a flat fee for the first minute of a call and another fee for each additional minute or
any fraction thereof (see Exercise 82 in Section 2.5). In this project, we will explore in detail a function that gives the cost

of a telephone call under the above conditions.

1. Suppose a long-distance call costs 75 cents for the first
minute plus 50 cents for each additional minute or
any fraction thereof. In a coordinate system where the
horizontal axis represents time ¢ and the vertical axis
price p, draw the graph of the function p=C (t) that
gives the cost (in dollars) of a telephone call lasting ¢
minutes, 0 <7< 5.

2. Does lirln5 C(1) exist? If so, find its value.
1—1.
3. Does 1iIr31C(t) exist? Explain.

4. Write a short paragraph on the continuity of this
function. Classify all discontinuities; mention
one-sided limits and left or right continuity where
applicable.

5.

In layman’s terms, interpret lim C ().
125

In layman’s terms, interpret lim C(r).
=3

7. Inlayman’s terms, interpret lim C (t)

10.

1—>3"

If possible, find C’(3.5).
If possible, find C’(4).

Find and graph another real-life function whose
behavior is similar to that of C(¢). Label the axes
appropriately and provide a brief description of your
function.




Chapter 2 Application Project:
The Squirrel Population Is Going Nuts

When there is an ample food supply, ideal conditions, and no limiting factors that would curb birth rates or cause premature
death, a population is expected to grow quickly and at an accelerating rate. An easy way to understand this is to consider the
fact that as the population grows, there will be more and more births and, at least initially, deaths won’t affect the growth very
much. If we examine a population over a longer time span, however, we would expect the growth rate to slow down. This may be
due to limitations in food supply, the appearance of predators, diseases, or other factors. (You will learn more about population
growth in Section 3.7.)

In this project, we will examine a few patterns of population growth, discuss rates, and look at some functions that can be used
to describe the process.

1. a. Suppose a population of one hundred squirrels starts to grow in a large forest with unlimited food supply and no
predators. Using the horizontal axis to represent time ¢ in months and the vertical axis to represent the number of
squirrels in the population, sketch by hand a possible graph depicting the population growth during the first few
months. Explain your choice, mentioning rate of change, and how it changes over time. (Answers will vary.)

b. Use a graphing utility to find and display the graph of a function that approximates your sketch from part a.
reasonably well. What type of function did you use and why? (Hint: Pay attention to the scaling of the axes. You may
want to review the common functions and function transformations from Sections 1.2 and 1.3. Answers will vary.)

2. a. Now assume that the growth of the population in Question 1 starts slowing significantly after the first year. Sketch by
hand a possible graph of the population growth over the first two years. Compare and contrast this new graph with the
graph you sketched in Question la and explain any similarities and differences.

b.*Like you did above in Question 1b, utilize a graphing utility to find a formula for a function that closely approximates
your sketch for Question 2a.

3. Write a short paragraph to argue why it is unrealistic to model the growth of a population using a curve that is increasing
at an increasing rate on (0,2). Describe the kind of graph that you think would be the better choice.

4. a. Hand sketch a possible curve depicting the growth of a squirrel population that has grown large enough to reach
the limit of the amount of food that the environment is able to supply. How does the rate of change vary over time?
Explain your reasoning.

b. How do you think the curve might change if it is to reflect the appearance of a growing predator population?



The first mathematician to introduce accurate models for population growth was Pierre Francois Verhulst (1804—1849). He
introduced what he called logistic curves in a series of papers starting with “Note on the law of population growth,” published
in 1838. His work was based on studying the population growth patterns of several countries, including his native Belgium. In
Question 5, you will be asked to examine such a logistic curve.

>

Figure 1 A Logistic Curve

5. The function below describes the growth of a squirrel population in a large, forested area; time is measured in months, the
number of squirrels in thousands.

90
PO e

a. Determine the limit of the function as ¢ — . Describe in words the real-life meaning of the answer.

b. Use a graphing utility to sketch the graph of P(t) . How does its derivative change with time (i.c., as ¢ — o0)? f i

- e

6. The following table represents the approximate size of the US population between the years 1940 and 2020. Use the table
to answer the questions below.

Approximate Size of the US Population in Millions
Year 1940 1950 1960 1970 1980 1990 2000 2010 2020
Population (in millions) 1322 1513 1793 2032 2265 2487 2814 3087 3314

a. Find the average annual rate of change of the population of the US between 1950 and 2000.

b. Estimate the annual rate of change of the US population in the year 1950. (Hint: Consider the population before and
after 1950.)

c. Estimate the annual rate of change of the US population in the year 2000. (See the hint given in part b.)

d. Compare the answers you obtained in parts a.—c. What can you infer from this? How does the rate seem to change
over time?

e. Using the population data from the table, hand sketch a possible graph depicting the population change between
1940 and 2020. How is your answer to part d. reflected in the graph?

f. Based on your answers above, what are your predictions for the short-term and long-term future?




Chapter 3 Conceptual Project:
Under Pressure

The following table shows the atmospheric pressure p at the altitude of k& feet above sea level (pressure is measured in mm Hg; note
that this unit of pressure is approximately the pressure generated by a column of mercury 1 millimeter high).

K (ft) 0 1000 2000 3000 4000
p(mmHg) | 760 733 707 681 656

6000 7000 8000 9000 10,000
609 586 564 543 523

1. Find the average rate of change of air pressure from
sea level to 2000 feet of altitude.

2. Find the average rate of change of air pressure between
the altitudes of 4000 and 10,000 feet.

3. Use a symmetric difference quotient
p(c+h)—p(c—h)
2h

to estimate the instantaneous rate of change of air
pressure at 7000 ft by choosing /# = 1000 ft.

4. Tell whether you expect the answer to Question 2 or 3
to better approximate the instantaneous rate of change
of air pressure at altitude 7000 ft. Explain. (Hint:
Plotting the data on paper may help.)

5.* Explain why you expect the symmetric difference

L

f(c+h)—f(c—h)
2h
approximation of the instantaneous rate of change

quotient in general to be a better

of f at x = ¢ than the “regular” difference quotient
f(c+h)—f(c)
-

. Use a graphing utility to find an exponential regression

curve to the given data and plot the curve along with
the data on the same screen.

. Use the exponential function you found in Question 6

to estimate the instantaneous rate of change of air \
pressure at 7000 ft, and compare with your estimate
given in Question 3.

. Is the instantaneous rate of change increasing or

decreasing with altitude? Explain.
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Chapter 3 Application Project:
The Ultimate Hail Mary

In April 2021, legendary NFL tight end Rob “Gronk” Gronkowski set a world record by catching a football that was dropped
from a helicopter hovering 600 ft overhead. In the words of ESPN’s Adam Schefter, this was the “highest altitude catch” ever! In
this project, we will examine the behavior of objects dropped from high altitudes. Throughout Questions 1-5, we will ignore air
resistance; then in Questions 6—8, we will develop the tools to include it in our calculations, allowing us to make our predictions
much more accurate.

1. An object is dropped from the window of a hovering helicopter at an altitude of 250 ft. How long is it in the air and
what is its speed of impact?

2. Answer Question 1 under the assumption that the object is dropped from the same altitude from a helicopter that is
ascending vertically with a constant speed of 16 ft/s.

3. What happens if the helicopter is accelerating vertically upward at 0.5 ft/s” but its altitude and instantaneous upward
velocity are the same as in Question 2 at the moment the object is dropped? Explain.

4. Based on your answers given above, do you think the situation for Gronk would have been different if the football had
been dropped from a vertically ascending or descending (rather than hovering) helicopter? Explain.

5. Answer Question 1 if an object is dropped from a helicopter hovering at an altitude of 600 ft. Is your answer realistic?
Could this have been true of the football Gronk caught? Explain.

In order to develop a model to more accurately reflect (and predict) what happens in real-life free falls, we must consider air
resistance. From your answers to the next questions, you will be able to better approximate the actual speed of the football when
Gronk caught it. It was indeed a highly impressive feat!

6. When air resistance is taken into account, does a free-falling object constantly accelerate throughout its motion? If not,
what can you say about its acceleration and velocity? Explain. (Hint: Think of falling rain drops or snowflakes.)

7. The resistance of the medium surrounding a moving object exerts a force directly opposing the motion. That force,
commonly called the drag force, is obtained from the formula

F, :%pszdA

where v is the velocity and 4 is the cross-sectional area of the moving object, p stands for the density of the
surrounding medium, and C, is called the drag coefficient, which depends on the general shape of the object. (Note
that 4 is actually the area of the cross-section perpendicular to the direction of motion. Can you see why?)

Use Newton’s Second Law of Motion (see Topic 2 in Section 3.7) to find a formula for the maximum velocity that a
free-falling object attains when falling in air. This is called the object’s terminal velocity. (Assume that the altitude is
not high enough to affect air density.)



8. a. Use your answer to the previous question to estimate the speed of the falling football at the moment Gronk
caught it, setting a world record. (Hint: We will assume that the ball was falling with its major axis oriented
horizontally and approximate its cross-section as an ellipse. The formula for the area of an ellipse can be found
in Example 3 of Section 7.4.) A football’s major and minor axes are 11 and 7 in., respectively, and its mass is
approximately 0.9 1b. Use 0.77 for the drag coefficient of a football falling with its major axis perpendicular to
the direction of the fall. Use 0.075 Ib/ft® for air density.

b. Compare the above result to your answer given in Question 5. How significant is the effect of air resistance on a
falling football? Do you think the same would be true of a falling rock? Why?

c¢. Considering your answers above, how do you think you need to modify your answers to Questions 1-4 when air
resistance is taken into consideration? Explain.




Chapter 4 Conceptual Project:
Spot the Difference

Consider a function f'(x) that is at least twice differentiable. In this project, you will show that the second derivative of f'(x)
at x = ¢ can be found as the limit of so-called second-order differences, as follows.

f"(C):limf(c+h)_2f(c)+f(0—h)

h—0 h2

1. Instead of working with a secant line through the 2. By substituting the points (c —h f (c - h)),

points (c,f(c)) and (c+h,f(c+h)) like we did (c,f(c)), and (c+h,f(c+h)) into

when approximating the first derivative, suppose that y=ax’+a,x+a,, obtainasystem of linear

2 . .
y=ax ta,x+a, equations in unknowns a,, a,, and a;. Solve the system

. . . for the unknown a,.
is the parabola through the following three points

on the graph of /- (c—h,f(c—h)), (c,f(c)), and 3. Use Questions 1 and 2 to argue that f”(c) is the

(c+ h,f(c+h)). Do you expect to always be able to following limit of the second-order differences.

find coefficients a,, a,, a, € R such that the resulting fe+h)=2f(c)+ f(c—h)
parabola satisfies the desired conditions? Why or S (C ) = %}f}(} e

why not? Why would you expect 2a, to be “close”

to f"(c) if  is “small”? What will happen to 2a, as 4. Use L’Hopital’s Rule to verify the result you found in

h — 0? Write a short paragraph answering the above

i Question 3.
questions.




Chapter 4 Application Project:
Cutting Corners with Cappuccinos

{
Suppose the management of a coffee shop chain wants to minimize the daily costs associated with delivery and storage for its
' franchises. In this project, we will find a formula for accomplishing that, given certain simplifying assumptions.

We will assume that the holding costs for a franchise are directly proportional to storage time as well as the total amount of
unsold (whole bean or ground) coffee they have on hand. (Holding costs in general are the costs associated with storing unsold
inventory. Some of the contributors to these expenses are the facts that the capital already invested in the inventory cannot
earn interest elsewhere, as well as the costs of storage space, utilities, insurance, labor, damaged or spoiled items, etc.) We will
assume that each delivery comes with a flat charge, regardless of the amount of coffee delivered. In addition, daily consumer
demand is assumed to be constant, meaning the total amount of coffee purchased at the franchise is a linear function of time. Our
notation will be the following.

Jf =delivery fee in dollars

a = delivery amount in pounds

h = holding costs in dollars per pound per day
¢ = customer demand in pounds per day

t = time in days

x = number of days between two successive deliveries

1. Suppose a delivery in the amount of @, pounds of 3. Suppose that during the first day after delivery, the

7

coffee arrives at a franchise. In a coordinate system
where the horizontal axis represents time ¢ measured
in days and the vertical axis stands for the amount

A of coffee measured in pounds, sketch the graph of
A(t), the amount of coffee at the store as a function
of time, from the point of delivery until the store runs
out of supplies. What type of function is it? (Suppose
delivery happens at ¢ = 0. Be careful. Neither time, nor
the coffee amount stored, can ever be negative.)

. Using a, and c as parameters (unspecified, but fixed

values), answer the following questions.

a. Find the equation of the graph you sketched in
Question 1.

b. Use your answer from part a. to find a formula for
t,, the number of days it takes for the franchise to
run out of supplies. This length of time is called
days sales of inventory, or DSI in the business
world.

franchise’s coffee supply decreases from the initial ¢,
pounds to a, pounds. Explain why it is reasonable to
calculate their holding cost for the day as follows.

H, = G ta, h
(In other words, by multiplying the average daily
inventory by the holding cost per pound per day.
Hint: Refer to Question 1.)

. Now consider the first two days of the DSI cycle.

Assuming that there are still @, pounds of coffee

left at the end of the second day, use your answer to
Question 3 to show that the total holding costs the
franchise incurs during the first two days of the cycle
can be obtained as follows.

+
H, =252 (2h) = (a +a, )
(In other words, we can again take the average

inventory for the first two days and multiply by twice
the daily holding cost per pound of coffee.)



5. Generalizing the result from Question 4, answer the following questions.

a. Find a formula for the total holding cost /, for a full DSI cycle of #, days. (Hint: Use the fact that the amount
stored at the endpoint of the cycle is zero pounds, and again work with the average inventory.)

b. Find a formula for the total cost C, incurred by the franchise from delivery and storage over the cycle in part a.

The remainder of this project is devoted to finding a formula for the length of the DSI cycle that minimizes the storage-and-
delivery expenses for a franchise. Customer demand, the delivery fee, and the daily holding costs per pound will be assumed to
be constant, but we will treat the delivery amount and the length of the DSI cycle as variables (denoted by a and x, respectively).
As you might have discovered already from answering Questions 1—4, the delivery amount will determine the length of time
before the next shipment becomes necessary; in other words, the two variables are strongly related.

6. Letting a denote the amount of coffee (in pounds) delivered to the franchise and x stand for the time it takes (in days)
for the store to run out of supplies, answer the following.

a. Find an equation relating the variables a and x. (Hint: Refer to Question 2b.)

b. Use your answers from Questions 5b and 6a to express the total cost C as a function of DSI cycle length; that is, find
a formula for the function below.

C=C(x)

c. Find a formula for the function D (x), the average daily cost stemming from delivery and storage expenses. (Hint:
There are x days in a DSI cycle.)

7. Find the (positive) critical point of the daily cost function D(x) of Question 6¢, and use the Second Derivative Test to
obtain a formula for the length of the DSI cycle that minimizes the daily delivery and storage-related expenses for the
franchise.

8. Sketch a possible graph for the daily cost function D (x) Briefly discuss the main features of the graph.




Chapter 5 Conceptual Project:
Looking For a Sine

The topic of this project is the so-called sine integral function, which is important for its applications, most notably in electrical

engineering and signal processing.
1. Consider the following piecewise-defined function.
SO if 1> 0
1 if 1=0
Prove that for any x > 0, f (t) is integrable on [O,x].
2. The sine integral function is defined as follows.
Sl(x) = IO f(t)dt, for x>0
Prove that Si(x) is continuous.

3. Find the derivative %Si(x).

. Without graphing first, write a short paragraph on why

you would expect the graph of Si(x) to be oscillating.
Explain why its amplitude is expected to decrease as
X —> o0,

. Find the x-values where the relative maxima and

minima of Si(x) occur.

. Extend the definition of Si(x) to negative x-values

and prove that for any a > 0, f Si(x)dx =0.

. Use a graphing utility to plot the graph of Si(x) on

the interval [—87r, 87r].

. Use a graphing utility to approximate the range of

y= Si(x) to four decimal places.



Chapter 5 Application Project:
Too Math Too Furious

> When we talk about acceleration of cars (for example, when discussing times necessary to accelerate from zero to sixty miles
: per hour), we often assume their acceleration is constant. This makes it easy to perform speed and distance calculations (see
Question 1 below). However, in real life, constant acceleration over long periods of time may not be realistic. Air resistance, an
engine’s torque delivery, changing road conditions, and potential wheel spin can all lead to variable acceleration. Air drag alone,
which is proportional to the square of velocity, has a strong effect on acceleration (see Question 7 of the Chapter 3 Application
Project). For example, at the very high speeds experienced by race cars, air resistance is strong enough that simply stepping
off the accelerator creates a sense of hitting the brakes with full force! It would therefore be realistic to expect acceleration to
decrease at higher speeds. In this project, we will illustrate the power of integration by considering motion problems where the
accelerating vehicles have time-dependent (nonconstant) acceleration. We will start with an ultrafast Porsche model.

1. The 2021 Porsche 911 Turbo S reaches 150 mph from a standstill in 13.6 seconds. In the analysis that follows, we will
initially use the (unrealistic) simplifying assumption that acceleration is constant throughout the 0—150 mph test run.

a. Find the presumably constant acceleration a (in ft/s?).

b. Use antidifferentiation (as in Example 4 of Section 4.7) to find the accelerating car’s velocity v = v(t) as a function
of time (in ft/s).

c. Find an integral formula for the velocity function in part b. (Hint: Use the Fundamental Theorem of Calculus,
Part I.)

d. Find the distance (in feet) covered by the car during the acceleration run.

2. The table below shows the actual acceleration times of the 2021 Porsche 911 Turbo S from zero to various speeds
up to 150 mph. (Units are in miles per hour and seconds. As a side note, the car is actually capable of a top speed of

205 mph!)
2021 Porsche 911 Turbo S Acceleration Times
LG 0-30 0-40 0-50 0-60 0-70 0-80 0-90 0-100 0-150
Speed (mph)
Time (s) 0.9 1.4 1.8 23 3.0 3.7 45 56 136

Source: Motor Trend

Table 1
a. Use the data from Table 1 to explain why the acceleration a = a(t) is actually a nonconstant function of time,
rendering our simplifying assumption in Question 1 unrealistic.

b. What features would you anticipate for the graph of a(t) to possess? Describe these features, mentioning the first
derivative and concavity. (You may want to plot a few points using data from the table.)




Notice that Table 1 gives us values of the Porsche’s velocity function v = v(t) at various points on the time axis during the
acceleration run. We will use these values to approximate the total distance covered during the run. (Note that this is the same as
the displacement of the car from its starting position, since there is no change of direction during this type of test run.) To start
off, notice from Table 1 that the Porsche reaches 30 mph in the first 0.9 seconds. A crude approximation of the distance covered
while doing so can be obtained by taking the average of the speeds at the two endpoints of this time interval, at # =0 and = 0.9
(where the speeds are 0 mph and 30 mph, respectively), and assuming that the speed is constant and equal to this average value
throughout the entire time interval.

3. a. Use the technique described above to approximate the displacement during the first 0.9 seconds of the run, and then
on the second time interval, from 0.9 seconds to 1.4 seconds. Add up the results to obtain an estimate for the total
displacement during the first 1.4 seconds of the run. Express your answer in feet.

b. Continue the process from part a. over all consecutive time intervals from Table 1 and add up the results to obtain an
estimate for the total displacement (in feet) during the entire 0—150 mph acceleration run. What is the name of the
sum you just formed?

Notice that if we had more data in Table 1, we could work with shorter time intervals in order to arrive at more accurate
estimates for displacement. Better yet, if we had a formula for v= v(t), we could use a definite integral to calculate the actual
displacement, much like we did in Example 1 of Section 5.2. You can use this observation to answer Question 4. Then, in the
subsequent problems, we will generalize our analysis.

4. Use your work on Question 3 to give a definite integral interpretation of the total distance d traveled by the Porsche
during its acceleration run. Find a formula in terms of v(¢).

5. Suppose an object is accelerating along a straight line from ¢ =1, to ¢ =¢, and its acceleration is given by a = a(t),
while its velocity is v =v(r).

a. Use the definite integral to give a formula for the total displacement of the object in terms of v(t).
(Hint: Generalize your answer to Question 4.)

b. Given v(t), find an integral formula for the displacement function d (t) on the interval [to,tl]. (Hint: Generalize
your answer to part a.)

¢. Use a(r) and integration to arrive at an integral formula for the velocity function v(¢) on the interval [z,,7,]-
(Hint: Generalize your answer to Question 1c.)

d. Explain the validity of the formula you have given in part c. above. Use Riemann sums in your argument.

6. An experimental race car starts at a standstill and accelerates in a straight line. Suppose its acceleration can be described
by the function a(¢)=(31-2¢)ft/s*.
a. What is its velocity (in mph) five seconds later?

b. How far is it from the start at that instant?

c. Use technology to find the vehicle’s quarter-mile time. (This means the time needed for it to run a quarter mile from
its starting point.)




Chapter 6 Conceptual Project:
A Frictionless Flight

In this project, we will expand upon our explorations from Exercises 48 through 55 of Section 6.5 (also see the discussion
preceding those exercises). In particular, we will determine an equation satisfied by the velocity of a projectile launched with
initial velocity v,, taking into consideration that acceleration caused by gravity decreases with altitude. (This is important when
objects are launched to great altitudes.) We will then use our equation to find the maximum height attained by the projectile.
This will lead us to the value of the so-called escape velocity, the velocity needed for an object to be able to overcome Earth’s
gravitational field without further propulsion. (In turn, since gravity is conservative, this is the same velocity an object would
achieve if pulled in by gravity from an “infinite distance.”) We are ignoring all retarding forces (such as air resistance or friction)

in this discussion.

1. Recall from Exercise 48 of Section 6.5 that g, the
acceleration caused by gravity on a free-falling mass
near Earth’s surface, is approximately

MG

g= R
where M and R are the mass and radius of Earth,
respectively, and G is the universal gravitational
constant. However, a launched projectile’s acceleration
caused by gravity is negative (if we are assuming the
positive direction is upward) and actually depends
on its height / above Earth’s surface. In particular,
use Newton’s Law of Gravitation to show that this
dependence is given by the equation

a(h)=—K

(R+ h)2 ’
where a(0)=-g, as we would expect. (Actually,
a(h) ~—g when £ is negligible compared to Earth’s
radius.)

2. Show thatif v= v(h) denotes the velocity of the
projectile, then
=2
dh dt’
(Hint: Use the Chain Rule.)

3. Use the above results to show that

d(v’)  —ogr?

dh (R+h)"
4. Integrating both sides of the preceding equation with
respect to &, show that v =v(4) satisfies the equation

R
v2=yi—20R|1-——— |.
T4k R+h

(Hint: After integrating, use the fact that v(0)=v,.)

5. Use the equation found in Question 4 to find the
maximum height attained by the projectile.
(Hint: Use the fact that v = 0 when the projectile
reaches its maximum height.)

6. Find a formula for the escape velocity v, of the
projectile; then use the data found in the exercises
of Section 6.5 (Exercises 48—55 and the preceding
discussion) to express your answer in kilometers per
second. (Hint: Use the fact that if v, = v,, the projectile
will “travel to infinity.”)

7. Find the escape velocity of the projectile if it is
launched on the moon. (Hint: For moon data, see
Exercise 53 of Section 6.5.)



Chapter 6 Application Project:
3 Calculations to Blast Offl

In this project, we will examine the motion of a rocket after launch. As you know, a rocket is propelled by the force caused by
the exiting hot gases that result from rapidly burning fuel. This force is called the thrust of the rocket. The difficulty of analyzing
rocket propulsion arises from the fact that the mass of the fuel, which comprises a large portion of the rocket’s mass, decreases
rapidly during flight due to the high rate of fuel burn. This rapid decrease in mass occurs up until the moment when all fuel is
used up (a moment known as the burnout point). This means that the net force acting on the rocket is also a nonconstant function
of time but, as you will discover, integration helps us overcome the challenge of rapidly changing mass. Throughout the project,
we will ignore air resistance and assume that the acceleration caused by gravity g ~9.81m/s” is constant (in the case of rockets
that fly to high altitudes, this is not necessarily the case).

Under the above assumptions, we use Newton’s Second Law of Motion to obtain the following equation:
F,(t)=F (t)=m(t)g =m(t)a(t), (1)

where F, denotes the propelling force or thrust. This force arises from the fact that the mass of the burnt fuel is rapidly leaving
the rocket-fuel system, thus giving it upward momentum.

Although we omit the details of deriving it here, we will also use the fact that the thrust can be obtained as the product of v,
the relative speed at which the burnt fuel is exiting the rocket, and the rate of decrease in mass:

dm (t)
F(t)=v, - ——=.
t ( ) S dt
1. Suppose a rocket of mass eighteen metric tons is fired 3. Use Equation (1) to find the rocket’s velocity function
vertically upward. Of its total mass, fuel accounts v(t), as follows. From Equation (1), we obtain
for twelve metric tons. The hot gases resulting from p i
burned fuel are leaving the rocket at a relative speed of m(t)a(t) = m(t) v(t) =v,- m(t) - m(t)g;
2500 meters per second and at a rate of 150 kilograms dt dt
per second. Calculate the thrust F, propelling the then we use differential notation to arrive at
rocket upward. P p i
2. Use Equation (1) to calculate the net force F, acting mdy =V ydim —mga.
on the rocket Use this equation to solve for dv, and then obtain
a. at the moment of blastoff; v(t) by integration:
b. just before all fuel burns away; v(z) _ J‘ "dv
, -

c. after all fuel has burnt away.
4. Use your answer to Question 3 to find the terminal

velocity of the rocket after all fuel has been used up.
(Hint: Be careful. The velocity of the exiting fuel is
negative.)



Chapter 7 Conceptual Project:
Infinite Wisdom

In this project, we will derive a famous infinite product named after its discoverer, the English mathematician John Wallis
(1616-1703). Wallis introduced the symbol oo for infinity, and in turn he used 1/c0 to denote an infinitesimal quantity. He
contributed to the development of infinitesimal calculus (it wasn’t until the 19" century that infinitesimals were replaced by limits

in the works of Bolzano, Cauchy, and Weierstrass).

1. For a nonnegative integer n, let
/2, n /2 n
In:_[ sin xdxzj cos” x db.
0 0
Find [, 1}, I,, and I,.

2. Show thatifn>2,

(Hint: See Exercise 81 of Section 7.1.)

3. Use Questions 1 and 2 to find /,, I, I, and /..

4. Show that in general,

i3 :2n—1.2n—3.2n—5_'n_1_1,

! 2n  2n-2 2n-4 2 2
while

I, = 2n .2n—2.2n—4_m.2'

2n+1 2n—-1 2n-3 3

(Hint: Observe a pattern or use induction.)
5. Use Question 4 to show that

1, 35%.(2n-1) (2n+1)
L 224 (2n)’
holds for all n.

(SR

6. Show that

2n+1

7. Prove the inequalities

127771 2 IZn 2 [2n+1'

(Hint: Use the definition of /, from Question 1 and
compare the integrands.)

. Use Questions 6 and 7 to show that

1s1¢£1+L

2n’

2n+l1

and use this observation to prove that

. Use your answers to the previous questions to derive

Wallis’ product, as follows.

, 224%....(2n)’
= lim 3
2 =375 (2n-1) (2n+1)




Chapter 7 Application Project:
Speeding Up to Slow Down

Though often overlooked by nonenthusiasts, one of the most important characteristics of a car’s engine is the torque it generates,
and subsequently, its distribution across the rpm range. A graph of the torque an engine produces, as a function of rpm, is referred
to as the engine’s torque curve. In this project, we will investigate the effect of the torque curve on a car’s power, especially on
its performance in stop-and-go city driving.

In physics texts, torque is introduced as the measure of a force’s ability to rotate an object about an axis. Specifically, when a
force is rotating a mass or a rigid body around an axis, its torque equals the product of the force and the perpendicular distance
of its line of action from the axis of rotation. (We will give a precise definition in Section 11.4.) In automotive technology,
torque is the measure of the engine’s ability to rotate the driveshaft, and ultimately, the drive wheels. It is responsible for a car’s
acceleration and, simply put, torque is what you feel when stepping on the accelerator pedal.

As you would expect, the engine’s torque rating is strongly connected to the car’s power, which is measured in horsepower (hp)
or kilowatts (kW). We will first explore this relationship, then examine how the shape of the torque curve influences acceleration
and driving feel, and later we will use integration to calculate the total energy required to accelerate a car.

In general, power is defined as the instantaneous rate at which work is done, given by the following formula.

aw
P=— 1
” (1
Since we can think of work as the transfer of energy (usually denoted by £), an alternative equation for power is as follows.
dE
P=— la
” (1a)

Though we will not derive it here, the (instantaneous) power of an automotive engine with a torque output of 7 is given by the
following equation.

P=71-w 2)
The value of « is the angular velocity of the driveshaft, calculated as follows, where 6 is the angle of rotation of the driveshaft
in radians.
do
w=—
dt
1. If P(t) denotes the power output of an engine as 2. a. Given that angular velocity is measured in radians
a function of time, use Equation (1) above to show per second, and that rpm expresses the number of full
that the total work done by the engine in accelerating revolutions per minute, find the conversion factor
the car from ¢ =¢, to ¢ =¢, can be obtained from the between angular velocity and rpm. In other words, what
subsequent formula. angular velocity (in rad/s) corresponds to 1 rpm?
W= J"l P (,) dt b. Suppose an engine’s torque output is 7' Ib-ft. when
o the engine speed is N rpm. Use Equation (2) and your

answer to part a. to express the engine’s power P in
Ib-ft/s at that instant.



¢. Given that 1 horsepower (hp) equals 550 Ib-ft/s, use your answer to part b. to verify the given formula.

torque X rpm

ower =
P 5252

Power in the above formula is measured in hp, while torque is measured in 1b-ft. However, in general, power is most
often expressed using the metric system, in watts (W) or kilowatts (kW). One watt of power performs one joule of
work in one second, demonstrated as follows.
J m’
IW=1-=1kg-—
s s

When referring to automotive power, we note that since 1 watt approximately equals -i= horsepower, we obtain the
following conversions between units.

1 hp =746 W =0.746 kW

3. Suppose the graphs in Figure 1 show the torque and power curves of the 2015 and 2021 Brand X car models,
respectively. Examine the curves and answer the questions below.

200 200hp 200 1 1 1 200 hp
Ib-ft Ib-ft
Torque
175 175hp 175 \ 175 h
Tb-ft P g \ Va \ P
)
150 || | | Torque 150 hp 150 l/ \\ 150 hp
Tb-ft \ R Ib-ft / \
125 / 125 A 125 h
Ib-ft - 7 TN 12300 / P
100 /| /< N 100 / M
/
Ib-ft / // \ 100hp 7 / Power 100 hp
75 / / Power 75 75 h
Ib-ft / / She e P
“ / o || |/
lb-ft / 0bp o [ S0hp
25 25 /
Ib-ft / 25hp R 25 hp
1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000
Engine Speed (rpm) Engine Speed (rpm)
(@) 2015 Brand X Car Model (b) 2021 Brand X Car Model

Figure 1 Torque and Power Curves of Two Brand X Car Models

a. Notice that in both graphs of Figure 1, the power curve intersects the torque curve at 5252 rpm. Is that a
coincidence? Explain.

b. Use Figure 1a as well as the formula you obtained in Question 2c¢ to estimate the horsepower range generated by the
2015 car’s engine when the engine is revved from 2000 to 3500 rpm. (Answers will be approximate. Note that this
is a typical rpm range in city traffic. Also notice how different your answer is from the “peak horsepower” rating
typically advertised for consumers!)

c. Repeat part b. for the 2021 edition of the car.
d. From your answers above, which car would you expect to have better acceleration in typical city driving conditions?

e. Summarize your findings in this problem by explaining why having a “flat” torque curve (as in the second
illustration above) is advantageous in city driving. (This is typical with certain turbocharged or large displacement
engines.)




4. Suppose a certain car’s torque curve can be
approximated by the function

T(x)=200sin ——
3000

on the interval (0,6500), where the independent
variable x stands for rpm.

a. Find a formula for the power function P(x) (ie.,
the horsepower as a function of engine speed) on
the same interval.

b. Use a graphing utility to graph the functions 7'(x)
and P(x) on the interval (500,6500).

c. Suppose we accelerate the car (without shifting
gears) from 0 to 4000 rpm in 4 seconds. Assuming
that the rate of change of the engine speed is
constant, use your answer from part a. to express
the engine’s output in hp as a function of time
(in seconds) during the acceleration (i.e., find the
formula for P(1)).

. Convert your answer in part ¢. to kilowatts to obtain

a formula for the engine’s output in kilowatts as a
function of time. Then use integration by parts to find
the total work done by the engine, in kilojoules, during
this acceleration run. (Hint: Use the formula from
Question 1.)

. Suppose we accelerate the 2015 Brand X car model
from 1000 rpm to 3500 rpm in 5 seconds, without
changing gears and while keeping the rate of change
of engine speed constant. Use the Trapezoidal Rule
and Figure 1a to estimate the work done by the engine.
Express your answer in kilojoules. (Answers will be
approximate.)

. Repeat part a. above for the 2021 Brand X car model,
using Figure 1b.

. Explain why car performance enthusiasts and tuners
often refer to torque or power curves by exclaiming, “I
want as much area under the curve as possible.”

. From your answers above, as well as those given to
Question 3, would you prefer a “flat” or a “peaky”
torque curve for city driving? Why? (There are no
right or wrong answers.)

6. Figure 2 shows the torque and performance curves of various Tesla models.

600 Tesla Model S Power and Torque i
550 \ MS60Nm = = =M S60 kW
500 \\ M S85Nm = = =M S85 kW-
E 450 N MSPNm = = =MSPKW -
= 400 N "
< 350 N
2 \\; NN\
g 300 i \\>\ N
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Fg i ;, \u ‘\\ ~
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Figure 2 Torque and Power Curves of Various Tesla Models
Source: Dr. Grzegorz Sieklucki, “An Investigation into the Induction Motor of Tesla Model S Vehicle”

a. By visually examining the Tesla torque curves, explain the fundamental difference between them and those we

discussed above.

b. Based upon your observations about the graphs, explain why most electric cars have impressive acceleration in stop-

and-go city traffic.




Chapter 8 Conceptual Project:
Creating a New Element

Recall from Section 3.7 our discussion of a chemical reaction where reactants 4 and B produce a new product substance C,
a process represented by

A+B—C.

In this project, we will derive and use a differential equation that describes such a process.

1. Suppose that in the above reaction for each gram of 4. If 20 grams of the product compound form during
reactant A, b grams of B are used to form C. If we the first 5 minutes, use the model you obtained in
start with initial amounts 4, and B, respectively, and Question 3 to predict how much of the product
X (t) denotes in grams the amount of substance C compound C is present 10 minutes into the process.

already formed at time ¢, find the remaining amounts

of reactants 4 and B at any time during the process. 5. Use your model from Question 3 to predict what

happens as ¢ — co. Interpret your answer.
2. Given that the rate of formation of substance C at any
time is proportional to the product of the remaining
amounts of reactants 4 and B, respectively, find a
differential equation in terms of X (t) that describes
the process.

(As in Question 1, let 4, and B, stand for the initial
amounts.)

3. Suppose a product substance C is being formed from
reactant substances 4 and B and that for each gram
of substance A4, 3 grams of B are used to form C.
As in Question 1, let X (¢) denote the amount of C
formed at time ¢, and assume that the initial amounts of
reactants 4 and B are 4, = 60 grams and B, = 40 grams,
respectively. Find the initial value problem describing
this reaction. (Hint: Use your answer to Question 2.)



Chapter 8 Application Project:
A Sturdy Foundation

On November 7, 1940, the original Tacoma Narrows Bridge spectacularly collapsed under the sustained effect of strong and
rhythmic wind forces. This stunning disaster was the result of what was then a poorly studied phenomenon called aeroelastic
SAutter caused by undamped periodic forces; its effect is closely related to what is called forced mechanical resonance.

Resonance might happen when a periodic external force is acting on an oscillating system. In this project, we will examine some
conditions under which the phenomenon might occur, with the assumption that no damping forces are present. Such motion is
called forced undamped motion.

1. The following initial value problem represents a 3. Find the formula for Y (1) = lim y(7). (Hint: Use

spring-mass system where the oscillating mass m is
acted upon by an external force as well as the restoring
force of the spring it is attached to. In addition to & (the
usual spring constant), fis also a constant.

dzy

m
dt*

+ky = fsin(6¢); y(0)=0; »'(0)=0

a. Compare the above IVP to that in Example 4 of
Section 8.4 and describe any differences. Relate
any mathematical differences to the forces acting
on the oscillating mass.

b. In words, describe why you would expect a major
difference in the motion of a spring-mass system
described by the above IVP, in contrast with
Example 4 of Section 8.4. Are there any damping
forces present?

c. Find the period and frequency of the expression on
the right-hand side of the differential equation.

. a. Find the general solution y,_(7) of the associated
homogeneous equation in the IVP above. Use the
conventional notation w = ./k/m.

b. Starting with y, (7)= Acos(0¢)+ Bsin(6t) as the
initial guess, find a particular solution y, of the
differential equation in Question 1. (Hint: See

Exercises 39-44 and the preceding discussion in
Section 8.4.)

c. Use your answers to parts a. and b. as well as the
initial conditions to find the solution y(7) to the
initial value problem of Question 1.

L’Hopital’s Rule.)

. a. Use the formula for Y(7) that you obtained in

Question 3 to examine lim|Y (l)|, and describe
11—

what happens to the amplitude of the oscillations
when 6 =w and ¢ increases without bound.

b. Use technology to obtain a graph that illustrates
the behavior of Y(t) as t — oo, (Choose your own
values for the unspecified parameters. Answers will
vary.)

c. Use your answer to Question 4a (along with a
limit argument) to explain the physical effect of
approaching w in this type of forced, undamped
oscillating motion.

. Your work on Question 4 and the answers you found

provide mathematical insights into the physical
phenomenon called resonance. This will occur in
lightly damped or undamped systems when the
frequency of the external driving force approaches the
oscillating system’s natural frequency, that is, when

6 — w. Use your results to write a short paragraph
explaining this phenomenon.

6.* There is actually a direct way to obtain Y (t), that is,

by finding the solution of the following initial value
problem.

mcjjzg} +ky=fsin[\/§tj? »(0)=0;y'(0)=0

Find the solution of the IVP above to verify the
formula for ¥ (¢) you obtained in Question 3b.
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Chapter 9 Conceptual Project:
Curve Control

In this project, you will be introduced to a class of parametric curves called Bézier curves. They are important for their
applications in engineering, computer graphics, and animation. This class of curves is named after Pierre Bézier (1910-1999),
a design engineer for the French automaker Renault, who first demonstrated these curves’ use in designing automobile bodies
in the 1960s. The design advantage of Bézier curves lies in the fact that they can easily be manipulated by moving around their
so-called control points. In addition, it is easy to smoothly join together several Bézier curves for more complicated shapes.

1. The linear Bézier curve By, (1) from P, (a,,b,) to 3. The cubic Bézier curve B, ,, () with control points

PB,(a,,b,) is simply the line segment connecting the
two points (note that P, and P, are the only control
points in this case). Verify that this curve can be
parametrized as

By, (1)=(1-1) R +B, 1 €[0,1],
and find x(t) and y(t) corresponding to this

parametrization. (In this and subsequent questions,
control points will be labeled P, (a;,,b,), 0<i<3.)

. The Bézier curve By, (¢) with control points P, P,

and P, is a quadratic curve joining the points P, and
P, in such a way that both line segments P, £ and

R P, are tangentto B, (t) Intuitively speaking, this
means that the curve starts out at P, in the direction

of P, and arrives at P, from the direction of P, (see
Figure 1).

Find x(7) and y(¢) corresponding to the
parametrization

By, (t)=(1=1)B,,(1)+B,,(t), t€[0,1]

and verify that B, , (7) satisfies the conditions stated
above.

P s

Figure 1 A Quadratic Bézier Curve

P,, P,, P,, and P, joins P, and P, so that the line
segments AP, and PP, are tangent to B, ,, () at
P, and P,, respectively (see Figure 2). Verify that the
following curve satisfies these conditions.

x(t)=a,(1-1) +3a,(1-1)" t+3a,(1-1)1* + a,t’

=by (1=1) +3b,(1=1)" 1+3b, (1-1)1* + b, , 1 €[0,1]
PI o

PO/\/P‘a

P

2

Figure 2 A Cubic Bézier Curve

. Show that the parametrization in Question 3

corresponds to
By, (1) =(1-1)B,,, (t)+1B,; (1)

. Use Question 3 to verify that the Bézier curve with

control points P, (1,3), P(3,7), P,(6,9), and

P, (8,6) has the following parametrization.
x(t)==2r +3* +61+1
y(1)==-3r—61" +121+3

. Find the slope of the curve in Question 5 at

a.t=0,b.r=1, andc.7=1.

. Use a computer algebra system to graph the Bézier

curve of Question 5 along with its control points. If
your CAS has animation capabilities, explore what
happens if you move around the control points in the
plane.



Chapter 9 Application Project:
Keeping Time Is Timeless

In this project, we will examine a pendulum that uses the solution of the tautochrone problem discussed in Section 9.1. Such
a pendulum was invented as early as 1657 by the Dutch mathematician, physicist, and astronomer Christiaan Huygens (1629—
1695). Huygens was interested in developing accurate clocks, and thus needed a pendulum whose period of oscillation was
independent of amplitude (i.e., unaffected by the initial position of the pendulum bob when released to swing freely). Huygens’
work, Horologium Oscillatorium (published in 1673) as well as his numerous other groundbreaking findings in various areas of
mathematics, physics, engineering, and astronomy, are a testament to his brilliance and creativity. We will analyze his invention

by appropriately modifying the parametric equations of the cycloid introduced in Example 4 of Section 9.1.

1. a. Sketch the inverted cycloid traced out by a point P
on a circle of radius a that rolls counterclockwise
along the line y = 2a assuming that P starts out
at (O,2a). (The circle is positioned between the
x-axis and y = 2a Show the path traced out by P
after two full revolutions; that is, sketch the cycloid
on the parametric interval 0<6 < 4.

b. Make a sketch to show the inverted cycloid of
part a. on the parametric interval —7 <60 <.

2. a. Find the parametric equations of the inverted
cycloid (henceforth referred to simply as cycloid)
in Question 1.

b. Use technology to reproduce the graph you
sketched in Question 1b.

3. Now, suppose we create a pendulum by attaching a
cord of length 4a to the cusp located at (0,2a) of the
cycloid of Question 1b, and let the bob swing left and
right, partially wrapping the cord around the cycloid in
the process (see Figure 1).

Figure 1 Cycloidal Pendulum
Source: Wolfram Demonstrations Project

a. Given that the length of the cord is equal to

4a, where does the bob touch the cycloid at the
pendulum’s most extreme positions? That is,
what is the location of the bob when the cord
is completely wrapped around the cycloid?
(Hint: See Example 7 in Section 9.2.)

. Note that while the pendulum is moving, the “free”

part of the cord (the portion that is not wrapped
around the cycloid) is tangent to the cycloid. Let
O denote the point of tangency (see Figure 1), and
suppose that O corresponds to the parameter value
0,. Find the length s of the portion of the cord
that is wrapped around the cycloid under these
conditions. (Hint: Make a detailed sketch and
consider the angle that the tangent of the cycloid
forms with the x-axis. See Exercise 71 in Section
9.2)

. Use your work on Question 3b to obtain a

parametrization of the path traced out by the bob
of the pendulum. (Hint: First find x and y in terms
of # and s; then eliminate s by making use of the
formula you found in Question 3b.)

. What kind of parametric curve have you obtained

in part a.? Use your answer to conclude that the
cycloidal pendulum is tautochronous; that is, its
period of oscillation is independent of amplitude.
(See the discussion and derivation under Topic 2 in
Section 9.1.)

/4




Chapter 10 Conceptual Project:
Working in Harmony

In this project, we are going to expand on our earlier work with the harmonic series. In the process, we will meet a famous constant
called Eulers constant, also known as the Euler-Mascheroni constant. (This number is not to be confused with e ~ 2.71828, the
natural base, which is also known as Euler’s number.)

1. Asin Example 6 of Section 10.2, we let s, stand for the 3. Use an appropriate theorem from the text to show

n™ partial sum of the harmonic series; that is,

1 1
s, =l4+—=4t+—.
n

(The partial sum s, is also called the n™ harmonic
number.) For each n > 1, we define

d,=s, —Inn.
Prove that d, > 0 for any positive integer n.
(Hint: Refer to the illustration provided for
Exercise 65 of Section 10.2, and start by comparing s,
. n+l
with ["(1/x)dx.)
2. Prove that {d”} is a decreasing sequence.
(Hint: Referring again to the figure from Exercise 65

of Section 10.2, fix an » and identify a region whose
areais d, —d,..)

that the sequence {d,} is convergent. Letting
~v=limd, this limit is called Euler’s constant.

It is important in many applications throughout
various areas of mathematics, and like other famous
constants (including 7 and e) can be approximated
with great precision using modern computing power.
Surprisingly, however, it is not yet known whether ~ is
rational or irrational!

. Use the convergence of {dn} to prove that the

2n
sequence a, = Y~ converges and find its limit.

i=n

. Use a computer algebra system to approximate -,

accurate to the first 10 decimal places.

6. Use the approximate value of v found in Question 5

to estimate s,, rounded to 5 decimal places, for

a. n = 10,000 and b. n = 2,000,000. Compare the latter
estimate with the answer for Exercise 125b of the
Chapter 10 Review.




-,

S

Chapter 10 Application Project:
A Spoonful of Sugar

In this project, you will build a model that sheds light on the mathematics behind medicine dosage. Your knowledge of sequences
and exponential decay will be essential for this work. It is important to note, however, that pharmacology is a complicated science,
and numerous factors are taken into consideration when actual drug dosage for the treatment of a particular condition is determined.
The model in this project, while it illustrates the basic ideas behind drug dosage, should not be used in real-life situations.

1. Clinical experiments have shown that the concentration C (t) of a drug in the bloodstream decays at a rate proportional
to the instantaneous level of concentration.

a. Using k for the constant of proportionality and assuming an initial level of concentration C (0) =D, setup an initial
value problem to find C (t) Assume ¢ is measured in hours.

b. Solve your initial value problem to find a formula for C (t)

2. a. Starting with a concentration level of C (0) = D, another dose is administered after a dosage period of p hours that
raises the concentration level by D. Construct a formula for the level of concentration just before the new dose is
administered, and denote it by C,. The reason for this naming convention is that this is the concentration level just
before the first so-called maintenance dose is administered. Note, however, that in practice the initial, so-called
loading dose, and the maintenance dose are usually different. (Hint: Note that C, =C(p).)

b. After yet another period of p hours, the same dosage D is administered again. Find the level of concentration just
before this second maintenance dose and denote it by C,.

3. Iterating the process in Question 2, find a formula for C,, »>2. (Hint: Use the formula for the sum of a finite sequence.)

4. Find C=1imC, to determine the long-term concentration after many repeated doses.

n—»0



The minimum concentration at which a drug is effective is often abbreviated as MEC (for minimum effective concentration).
In this project, we will denote that concentration by m,. On the other extreme, above a certain concentration level, a drug
will typically cause unwanted side effects and is said to be toxic. This concentration level is often referred to as the MTC (for
minimum toxic concentration), and we will denote it by m,. The interval [me,mt] is called the therapeutic window. In order for
a given drug to work, that is, to achieve the desired therapeutic effects without causing harm, we need to keep its concentration
level in this interval.

Now suppose we want to prescribe a dosage amount with an optimal dosage period that keeps the drug concentration within
the therapeutic window for the duration of treatment. One possible approach is to try to maximize the time between subsequent
doses for the patient’s convenience. In order to achieve that, we administer a loading dose that raises the concentration level
to just below m,, the top of the therapeutic window. Then we wait until the concentration drops down to m, and administer
a maintenance dose that raises the concentration by D =m, —m, to bring the concentration level back to (near) m,. In other
words, the goal is to achieve a long-term concentration C =m, with repeated maintenance doses D, . In Question 5, we will
determine the dosage interval to achieve this.

5. Substitute C =m, and D =m, —m, into the formula you obtained for C in your answer to Question 4, and then solve
for p to obtain a formula for the optimal dosage interval.

6. Suppose that a certain medication’s therapeutic window ranges from a concentration of 150 nanograms per milliliter
(ng/mL) to 600 ng/mL and that its half-life is 12 hours. Suppose one tablet raises the concentration by 150 ng/mL.
(A nanogram is one-billionth of a gram.)

a. What loading dose of this drug would your model recommend?

b. Based on your work on Question 5, what would be the optimal dosage and dosage interval for this drug?
(Hint: Recall the definition of half-life from Exercises 6667 in Section 1.2.)




Chapter 11 Conceptual Project:
Planes, Vectors, and Quadrilaterals

1. Letd, B, C, D be four points in R?, with M, M,, M,,

and M, being the midpoints of the line segments AB,
BC, CD, and DA, respectively. Consider the vector
M M, and show that

M, = (4B + BC),

Figure 1

2. Prove a statement analogous to the one in Question 1

for the vector M, M, and show that

MM, =-M,M

3y

In this project, we are going to use vectors to prove an interesting property of quadrilaterals. In fact, the result is general enough
that our quadrilateral doesn’t have to be planar, in other words, its vertices do not have to lie in the same plane!

3. Using the results of Questions 1 and 2, argue that the

quadrilateral M M ,M .M, is a parallelogram.

. Explain why the proof of Question 3 does not require

that the points 4, B, C, and D lie in the same plane.

. Use vectors in the three-dimensional coordinate system

to prove the statement of Question 3: [f ABCD is a

(not necessarily planar) quadrilateral in R®, then the
midpoints of its sides determine a parallelogram. (Hint:
To simplify your calculations, you can assume that three
of the vertices lie in the same coordinate plane with one
of them, say A4, located at the origin, and an adjacent
vertex, such as B, lying on a coordinate axis.)



Chapter 11 Application Project:
The Pipe of Least Resistance

In this project, we will use calculus to provide an introduction into the study of the velocity of a fluid flowing in a circular pipe.
This will provide a glimpse into the very complex area of study called fluid dynamics. In the Chapter 14 Application Project, we
will expand on our results and use them to better understand blood flow in human blood vessels.

Circular pipes (i.c., pipes with circular cross-sections) are most often used in practical applications, such as city water systems,
oil transportation lines, automotive cooling systems, etc. because they are the best at withstanding distortions caused by large
differences between interior and exterior pressures.

We will distinguish between laminar and turbulent flows. Laminar flow is smooth, streamlined flow where fluid particles travel
along smooth, observable paths called streamlines that don’t cross each other. Fluid layers flow over one another without mixing.
Turbulent flow, on the other hand, is characterized by fluid layers crossing paths, particles traveling along irregular trajectories,
and the presence of a multitude of small, chaotic whirlpool-like swirls (also called eddies) that disturb and slow down the flow,
absorbing a lot of energy. Turbulence can be observed, for example, in the flow of rivers, or in the way smoke rises from a
chimney. It is important to note that, due to friction and other factors, no flow is purely turbulent or purely laminar. In fact, no
matter what the flow type, there is always some internal friction, or resistance to flow, between adjacent layers of fluid, called
viscosity. A famous researcher who pioneered the study of fluid flow was British engineer Osborne Reynolds (1842—-1912).
He studied streamlines by injecting dye into fluid flowing in a glass pipe. The characteristic of a fluid known as the Reynolds
number, denoted Re, was named after him. The Reynolds number is the ratio of inertial forces to viscous forces in flowing fluid.
Below the value of Re = 2300, the flow in a circular pipe is considered laminar; for 2300 < Re <4000, it is called transitional,
while above 4000, it becomes turbulent. (Note, however, that these numbers are not absolute. Some consider the flow to be
transitional above Re = 2100.)

In this project, we will assume that the flow is laminar, and fully developed. This means that the pipe is long enough, and the flow
takes place far enough from entry into the pipe, so that the entrance effects are negligible. The velocity of each fluid particle is
constant and parallel to the axis of the pipe, and velocity depends only on the distance from the axis, which we will denote by r.
We will assume that the fluid is incompressible, that is, neither its volume nor its density changes with pressure. We will further
assume that the fluid completely fills the interior of the tube and that the flow is driven by pressure difference. The pipe is assumed
to be horizontal, so the effects of gravity won’t be considered. Lastly, we will also assume the so-called no-slip condition, which
is that the outer layer of the fluid—the layer that is in direct contact with the surface of the pipe—has zero velocity. As a result,
the closer the fluid is to the axis of the tube, the greater its flow velocity, with the maximum occurring along the axis of symmetry
of the tube. This maximum velocity is commonly called centerline velocity in fluid dynamics. The phenomenon just described is
the result of friction, or viscosity. As a first task, we will show that for a fully developed laminar flow, the curve formed by the
endpoints of the flow velocity vectors is a parabola. This is called the velocity profile of the flow (see Figure 1). Note that by our
assumptions, the velocity profile for fully developed laminar flow remains unchanged in the direction of flow.

We note that the scenario just described is one of the few special cases when it is actually possible to obtain theoretical results.
In the case of more chaotic or turbulent flows, one must resort to empirical results produced by experiments under carefully
controlled laboratory conditions.




Figure 1 Velocity Profile of Laminar Flow in a Circular Pipe

1. Suppose that a circular pipe of radius R is positioned in the three-dimensional coordinate system so that its axis of
symmetry coincides with the x-axis. Find the equation of the surface of the pipe.

In order to understand how the velocity of the flow depends on the distance from the axis, we will consider a small differential
volume element in the form of a circular cylinder around the x-axis and in the axial direction, with base radius » and length dx
(see Figure 2).
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Figure 2 Differential Volume Element

Assuming flow in the positive direction, the volume element illustrated in Figure 2 will move because the fluid pressure acting
on its left base is greater than that on its right base. On the other hand, a restraining force arising from the fluid’s internal friction,
or viscosity, is acting in the direction opposite of movement. In general, the force restraining the movement of a layer of fluid by
the layer next to it is proportional to their area of contact 4 and the change of velocity from one layer to the other, divided by the
distance over which this change is occurring. In our case,

dv
F =nd-Z,
» =1 dr

where the constant of proportionality 7 (the Greek letter eta) is called the coefficient of viscosity. In general, the thicker a fluid
is, the more viscous it is, with a corresponding higher n-value. For example, syrup is more viscous than water, motor oil is more
viscous than cooking oil, etc.

2. a. Denoting fluid pressures acting on the two bases of b. Show that the restraining force arising from viscosity is
the differential volume element in Figure 2 by P and s
P — dP, respectively, show that the force acting in the F =2mr-dx-n- "
B

positive direction on the volume element is
c. Use parts a. and b. to obtain the equation of motion for
the volume element. (Hint: Apply Newton’s Second
F Law of Motion, and remember that we are assuming
(Hint: Remember that P = VE ) each differential volume element is moving with

constant velocity, so its acceleration is zero.)

F =7r2dP.



. Use the equation of motion you obtained in Question
2¢ to show that

dsz‘d—Prdr.
2n dx

. Integrate the above equation to find a formula for

v(r). (Hint: Because the flow is fully developed,
P .

dar is constant. Don’t forget about the constant of

dx
integration.)

. Use the no-slip condition (i.e., the condition v(R)=0)
to find the value of the constant of integration in your
answer to Question 3b, and verify the formula

R* dP r
S ——
v(r) 4n dx[ RZ]

(Note that since v(r) is positive, our formula reflects

the fact that % is negative, meaning pressure drops

in the direction of flow.)

. Given that flow velocity reaches its maximum along
the axis (i.e., v,,, =v(0)), show that

W) =v,.. [1_;_]

. Conclude that the velocity profile of a fully developed
laminar flow is parabolic.

5. Suppose that the centerline speed of a fully developed

laminar flow in a circular tube of radius 3 cm is

10 cm/s. Find the equation of the parabola that
represents the velocity profile of this flow. (Hint: Place
the parabola in the usual xy-system, with its vertex

at the origin and opening leftward. Let the vector

V= <10,0,0> represent a velocity of 10 cm/s.)

. If the flow is more turbulent, experiments show that

the equation

V() =V (1—;—1]” (p>1)

better models the fluid velocity within the pipe. For
example, p = 7 provides a fairly accurate model for
certain turbulent flows. By choosing appropriate values
forr, R, and v, ., graph a velocity profile for such a
flow. (Answers will vary.)




Chapter 12 Conceptual Project:
A Satellite in Motion Stays in Motion

Some orbits, such as for certain Earth satellites, can be fairly closely approximated by circles. The slight loss of accuracy in
doing so is often well justified by the gain in simplicity of certain calculations. In this project, you will be guided to prove
Kepler’s Second and Third Laws in the case when circular orbits are assumed.

Let us now assume that a satellite is orbiting along a circular path of radius R. As we did in Section 12.4, we will start by
combining Newton’s Law of Universal Gravitation with his Second Law of Motion to obtain the equation of motion:

”

F=mr"=ma=

1. a. Assume that the satellite’s position function is
r(r)= <r(t)cos(9(t)),r(t)sin(@(t))>,
where by assumption, r(¢) = R. Recall the
unit vectors u(7)= <cos(9(t)),sin(9(t))> and
u ()= <—sin(9(t)),cos(9(t))> that we used in
Section 12.4, Topic 1 to describe the motion in

terms of polar variables » and 6 of an object with
position function

r(t)= <r(z)cos(0(t)),r(t)sin(e(t))>.

Explain why, in our case, F-u, =0.

b. Use the above observations and the fact that r(t)
is constant to prove that

r(1)0"(r)=0.

2. a. Use your work above to conclude that the angular
velocity

_df

w=—
dt

of the orbiting satellite is constant.

b. Find the formula for % in terms of w and deduce

Kepler’s Second Law from the observation made in
part a.

a GMm

r.
3
7

3. Use the normal component of acceleration and the
curvature of the circular path (Section 12.3, Example 4)
along with Newton’s Second Law of Motion to show

CI;;\Z/[ = Rw’.

4. a. Use the above result to show that the period 7 can
be expressed as

T=—.
w
T2
b. By calculating o use part a. to finish the proof

30

of Kepler’s Third Law.



Chapter 12 Application Project:
Basketball Scoring

In this project you will use vector functions to develop a simple model for three-point basketball shots. To keep the model
simple, we will be ignoring air resistance, friction, and other forces. Furthermore, by “scoring,” we will mean that the ball falls
straight into the basket on its way downward (i.e., we will ignore the possibility of the ball bouncing in off the backboard, or
any energy losses as a result of spins, etc.). For further studies, or for more refined models, the interested student should consult
resources such as John Fontanella’s book, The Physics of Basketball.

1. A basketball player is attempting a three-pointer from 4. Use your answer from Question 3 to find the necessary

a horizontal distance of 24.7 feet. He is releasing the
ball from 7 feet above ground level, aimed directly
toward the basket at an angle of elevation of 45°, with
an initial velocity of v,. Supposing that the player
stands at the origin and the basket is in the positive

initial velocity vector for the basketball if the player
is to score from the same spot (i.e., the origin) but this
time, shooting while running along the line y=x ata
speed of 10 mph in the positive direction.

y-direction, use the three-dimensional coordinate 5. Find a formula for and graph the required initial speed
system to find a vector function describing the position as a function of the angle of elevation over the interval
of the ball after release as a function of time. (Assume (0.7/2) if the player is to score (assuming the same
one unit on each axis corresponds to a distance of spot and release height as in Question 1).

I foot.) 6. Generalizing your work on Question 5, find a formula

. Use your answer to Question 1 to verify that the

basketball’s trajectory is a parabola.

. Assuming a standard hoop height of 10 feet, find the

initial speed for the ball that ensures that the player
described in Question 1 scores.

for the initial speed of a successful shot if the player
stands d feet from the hoop and shoots at an angle «
upward from horizontal, with a release height of / feet.
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Chapter 13 Conceptual Project:
Exactly the Difference

In this project you will use your experience with partial derivatives and differentials to learn how to solve an important class of
differential equations, called exact equations. Ordinary differential equations of this type are noted for their widespread applications
in physics and engineering. (See Section 8.1 for the definitions of differential equation and solution. Other than the basic definitions,
this project does not directly rely on, and can be considered independently of Chapter 8.)

1. Suppose that the first-order partial derivatives of the 4. Use Question 3 to determine which of the following

function z = f(x,) are both continuous on a region
R.If cis aconstantand y = y(x) is defined implicitly
by the equation f'(x,y)=c, show that y solves the
differential equation

£ (5y) ¥y ==f (%)

. Now consider a differential equation of the form
M(x,y)dx-i—N(x,y)dyzO (1)

and assume that there is a two-variable function
Vi (x, y) such that

af(x,y)
ox

= M(x,y) and af(x,y)

=N(x,»)

(such a differential equation is called exact, while
f(x,y) is called a potential function). Use your
answer to Question 1 to show that the set of level
curves f (x, y) =(C, CeR form a family of solutions
of the differential equation (1).

. Suppose that M (x, y) and N (x, y), as well as their
first-order partial derivatives, are continuous on an
open region R. Show that a necessary condition for
equation (1) to be exact is the following equality.

8M(x,y) B aN(x,y)
o o

(Note: If we require a bit more of R, the above
condition is also sufficient for exactness, a statement we
will not rigorously prove here, but the construction of a
potential function under the stated conditions is outlined
in Questions 5 and 6.)

equations is exact.

a. (2x+ye"y)dx+(xe"y —l)dy =0

b. [3x2y—%]dx+(x3 —\/;)dy =0

Explain why the potential function f of an exact
equation must satisfy

f ()= [M(x,y)dc+g(»),
where g is some function of the variable y.

Show that if the equation (1) is exact, then the equality
0 :
N(x,y) = 5J.M(x,y)dx+g (y)
must hold.

Use Questions 5 and 6 to solve the equation

2(x—y2 )dx+y(9y—4x)dy =0 by determining its
potential function f'(x,y) and identifying the family
of solutions as f'(x,y)=C. (Hint: After identifying
M(x,y) and N(x,y), use Question 5 to obtain a
tentative formula for f'(x,y), then use Question 6 to
determine the unknown function g ( y) J)

. Verify that the equation (2+x)ydx+2xdy =0

becomes exact after multiplying by the integrating
factor / (x, y) = xye". Solve the resulting equation.

:
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Chapter 13 Application Project:
Houston, We Have Liftoff!

In the Chapter 6 Application Project, we derived the velocity function for a rocket that is applicable to its first few moments after
blastoff. Our analysis assumed that gravity during the first few moments can be considered to be constant and, at the same time,
is an important factor in determining the rocket’s velocity. That velocity function can be expressed as

- gt, (1)

(1)

where v, is the (positive) magnitude of the relative exhaust velocity of the expelled gas, m, is the initial total mass of the rocket
(including fuel), m(t) is the combined mass of the rocket and fuel at time ¢, and g is the acceleration due to gravity. After the
initial blastoff phase, drag due to gravity is a less important factor in calculating change in velocity, and equation (1) is often
reduced to

v(t) =v,In

Av=v,In0, )
my
where Av represents the change in velocity over a period in which fuel is burned and the combined mass of the rocket and fuel
is reduced from m, to m . Equation (2) is the classic rocket propulsion equation that was derived independently by the Russian
rocket scientist Konstantin Tsiolkovsky, the American Robert H. Goddard, and the German Hermann Oberth in the first couple
decades of the 20™ century, and also in the early 19" century by the British mathematician William Moore.

In modern practice, booster rockets are often used to overcome drag due to gravity and atmospheric resistance in the initial
blastoff phase, after which they are jettisoned. The booster rockets are attached to the sides of a central stacked column of rocket
stages, each of which is also jettisoned in sequence until only the payload remains, with the goal of accelerating the payload to a
final desired velocity v,. Rocket stages (and booster rockets) are used so that the mass of the remaining rocket can be decreased
as each stage is detached.

In this project, you will derive a formula for the relative masses of each stage of a two-stage rocket given the goal of minimizing
total mass and achieving a given final velocity for the payload. We will assume that gravitational and atmospheric drag factors
are overcome by booster rockets, and hence that only equation (2) need be considered in designing the central stack consisting
of two stages and a payload.

N
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1. Let m, and m, denote the masses of, respectively, 3. Note that an ordered pair (,’nvl ., ) that minimizes
the first and second stages of the rocket when they are

filled with fuel, and let P be the mass of the payload. the function f (m,,m, )= m, +m,+P will

Assume that the mass of each stage, when emptied L . m+my+P
) ’ minimize the expression ————=——, and hence
of fuel, is the product of a structural factor s and its
fuel-filled mass, where s is a positive number between will also simultaneously minimize the expression
i i initi +m, + P . . S .
0 and 1 (s is typically l.es.s than 0.1). Then the initial It m, . The reasoning behind this is identical
mass of the stack consisting of two stages and payload P
is m, +m, + P, and the mass after the fuel of stage 1 to the observation in Examples 3 and 4 of Section 13.8
is expended is sm, +m, + P. Similarly, after stage 1 that minimizing the square of a given distance
is jettisoned, the initial mass of the stack consisting function simultaneously minimizes the original
of stage 2 and payload is m, + P and its mass after distance function. Consequently, and because it makes
the fuel of stage 2 is expended is sm, + P. If we let the task easier, we will minimize the expression
Av, denote the change in velocity of the initial stack m, +m,+ P . e
; In———=——, which means we will minimize
due to the fuel of stage 1 being burned, and Av, the
change in velocity of the second stage and payload 2
. -~ m, +m, + P (I_S) nn,
due to the fuel of stage 2 being burned, then the final f (nl ,nz) =In——-+ =In
velocity achieved by the payload is v, = Av, +Av,. P (1 s )(1 B SnZ)
Use these labels and equation (2) to express v, asa . .
function of m,, m,, s, v,, and P. Name the function subject to the constraint
you construct g, and since m, and m, are the two g(nl,nz) =v, 1r1(n1 ) +v, 1n(n2) =v,. Use the method
quantities we are free to vary, we will consider g to be of Lagrange multipliers to show that the minimum of
a function of the variables m, and m,. JAf occurs when
2. Our goal is to minimize the function 0= ="/
f(my,m,)=m, +m,+P subject to the constraint b ’
g(my,m,)=v,, and we will use the method of (Hint: Use properties of logarithms to rewrite 7
Lagrange multipliers to do so. The method is difficult before differentiating.)
to apply to f'and g as originally defined, but it becomes n, -1
much more tractable if we make a change of variables. 4. Show that m, = 1 P and that
—sn,
To that end, let
n, —1
m, = m, + P).
po P mt P | (l_sm]( 2+ P)
sm, +m, + P sm, + P

5. The Falcon 9 two-stage rocket by SpaceX is capable
of lifting a payload of approximately 23 metric tons to
(1 _S)”l _m+m,+ P q (1 - S)”lz _m,+ P low Earth orbit. Assuming a structural factor s =0.04,
1-sn, - m, + P an 1-sm, T p exhaust velocity v, =3.5 km/s, and final velocity
v, =10km/s, determine m, and m,.

With these definitions, show that

and consequently that

m +m,+P [ m+m,+P | m+P
P m,+P P

(1 - s)2 mn,

(1—Sn1)(1—sn2).

Sources: en.wikipedia.org/wiki/Tsiolkovsky rocket equation; en.wikipedia.org/wiki/Multistage rocket; and Christopher S. Vaughen, “Multivariable and Vector Calculus,”
Chapter 5 in The Kerbal Math & Physics Lab, sites.google.com/view/kspmath
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Chapter 14 Conceptual Project:
Unique Shapes Require Unique Methods

In this project you will be able to take advantage of useful coordinate transformations to evaluate multiple integrals on ellipses
and ellipsoids that would be much more challenging in the Cartesian coordinate system.

1. Find the Jacobian of the coordinate transformation 6. Find the mass and the center of mass of the
T(r,G) defined by x = arcos and y = brsin6, where semiellipsoid of Question 5 in the case that the density
a,b>0. at any point is proportional to the distance from the
xy-plane.
2. Use double integration along with the coordinate
transformation in Question 1 to arrive at the formula 7. Use a computer algebra system and ellipsoidal
2 2 . ..
for the area 4 of the ellipse x_2 + y_z -1 coordma.ltes to find the. second m(?ments and radii
a b of gyration for the solid of Question 5. Express

the second moments in terms of the mass m of the

3. Find the Jacobian of the transformation to ellipsoidal RO
semiellipsoid.

coordinates T,(p,0,¢) defined by x = apsin ¢ cos,

y =bpsingsind, and z = cpcos ¢, where a, b, ¢ > 0. 8. Use a computer algebra system and ellipsoidal

4. Use double integration along with the coordinate coordinates to find the second moments and radii of

transformation of Question 3 to arrive at the formula gyration for the solid of Question 6. As in the previous
2 2 problem, express the second moments in terms of the

2
for the volume V of the ellipsoid % + ;)}_2 + 2_2 =1. mass m of the semiellipsoid.

Cc

5. Use ellipsoidal coordinates to find the center of
2 2

mass of the upper semiellipsoid z=c,|1— x_z - Z—z,
a

assuming constant density.



Chapter 14 Application Project:
Maintaining Proper Blood Flow

In the Chapter 11 Application Project, we found the velocity profile of a fully developed laminar flow in a circular pipe. We
discovered that the centerline velocity is maximum, the velocity of each streamline depends on its distance from the centerline,
and that the velocity profile is parabolic.

In this project, we will use double integration to derive a formula for the average velocity of the flow and then use our findings to
derive Poiseuille s equation. Jean Léonard Marie Poiseuille (1797—1869) was a French physicist, mathematician, and physiologist
who was interested in the physics of blood circulation. He thus extensively studied the laminar flow of an incompressible fluid in
a cylindrical tube, and the factors affecting such flow. Of particular interest was the fluid pressure change along the pipe, since
the pressure difference dictates the pumping power required to keep the flow steady. The theory and formulas are especially
important in cardiovascular applications.

We will start by determining the average velocity of the flow by considering the volumetric flowrate. We define the (volumetric)
flowrate Q as the rate at which fluid volume passes through a particular cross-section of the tube:

714
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1. Letting v,, denote the average velocity of the fluid in the pipe and A, stand for the area of a cross-section, explain why
O=v A

av®ic?

that is, why the flowrate is equal to the product of the fluid’s average velocity and the cross-sectional area of the pipe.

2. Suppose the radius of a person’s aorta is about 1.5 cm and blood flows through it at an average velocity of 38 cm/s.
After the aorta, blood flows through the major arteries, then successively smaller arteries and arterioles before passing
through multitudes of capillaries, finally returning to the heart through venules and veins. The radius of most capillaries
is about 4x10™* cm, and blood passes through them at a speed of approximately 5x107> cm/s. Use these values to
estimate the number of capillaries in the human body.

3. Use the fact that fluids are incompressible to show that
Q = vavAc = J‘Iv(r)dA,
A,
where, as before, v(r) is the velocity of fluid particles at distance » from the centerline.

4. Use the above equation to arrive at the formula

where R is the radius of a cross-section.

5. Substitute the formula for v(r) obtained in the Chapter 11 Application Project (Question 4a) into the above integral
and perform the integration to arrive at the formula

) __R_z[d_”)
“ o 8nlde )




6. a. Combine the above equation with the formula for v(r) to show

w(r)=2v, (1_;—j

b. Use part a. to show that the average velocity of the flow is exactly half of its centerline velocity.

We are now ready to derive Poiseuille’s equation. It shouldn’t come as a surprise that pressure difference, or force, is needed
to maintain flow in a horizontal pipe. This is due to the viscosity of the fluid, which creates a resistance to flow. As Poiseuille’s
equation will tell us, the flowrate depends on the pressure difference (more accurately called the pressure gradient), the viscosity
of the fluid, and the dimensions of the pipe.

7. Consider a section of length L of the pipe. Denoting the fluid pressure at the initial point of the section by P, and letting
P stand for the pressure at the endpoint, show that the pressure change along this section satisfies

p-r-p
dx

e

(Hint: Use the fact that %D is constant.)

8. Combine the results of Questions 1, 5, and 7 with the notation AP = P, — P, (the pressure drop along the given section
of the pipe) to derive Poiseuille’s equation:

Q_ﬂR4(B—Q)_7rR4AP
8yl 8pL

As a last observation, notice what Poiseuille’s equation tells us: The volumetric flowrate of laminar flow in a circular pipe is

directly proportional to @ (called the pressure gradient), and inversely proportional to the viscosity of the fluid. What
L

is more surprising, though, is the fact that Q is also directly proportional to the fourth power of the radius (assuming a constant
pressure gradient). This explains why even a relatively small decrease in artery radius (often the result of cholesterol plaque
buildup) forces the heart to work much harder to maintain the proper flowrate, with a serious side effect being Aypertension, or
high blood pressure.



Chapter 15 Conceptual Project:
Showing Your Potential

Recall from Section 15.7 that if F is a vector field in R’ so that VxF =0 (such vector fields are called curl-free) on an open,
simply connected domain in space, then F is conservative, that is, there is a scalar potential f* so that Vf =F. On the other
hand, it can be shown that if F is divergence-free, that is, if V-F =0, then there is a vector field P such that VxP =F (such
a vector field is called a vector potential for F). In this project you will discover a way of finding a vector potential for a given

divergence-free vector field F.

1. Suppose
F(x,y,z) = <F1 (x,y,z),F2 (x,y,z),F3 (x,y,z)>
and
P(x,3,2) = (P (%.2,2), P, (x,3,2), P, (%.3,2))

are vector fields so that Vx P =F; thatis, P is a vector
potential for F. Show that for any differentiable scalar
field /, Vx(P+V/)=F; thatis, P+V/ is another
vector potential for F. (Hint: See Exercise 41 of
Section 15.4.)

In Questions 4-6, you will be guided to show that given a divergence-free vector field F, it is possible and fairly straightforward

to find a vector potential of the form described in Question 3.

4. Assume that
F(X,y’z):<F1 (xay’z)’Fz (x,y,z),F3 (xay;z)>

is a vector field such that V-F =0, and P is any vector
field of the form P = <0,P2,P3>. Show that P is a
vector potential for F if the following equalities hold.

oy Oz ox Ox

5. For the vector field F in Question 4, define
P, (x,y,z) = jx F, (t,y,z)dt +C, (y,Z) and

P (x,y,z)= —r F,(t,y,z)dt+C;(y,z), where

X, 18 an arbitraryﬂ starting value and C, and C, are
arbitrary functions of the variables y and z. Show that
P(x,y,z) = <0, P, (x,y,z),P3 (x,y,z)> satisfies the last
two equations in Question 4.

. Use Questions | and 2 to argue that if the vector field

. Show that in Question 5, it is always

. Show that the vector field

o

. If £ is any scalar field such that F™ =—Pp,, show that if
X

we define f’:P+Vf, then P, =0.

F has a vector potential P, then it has one whose first
component is zero. In other words, we may assume
throughout our discussion that P = <O,PZ,P3>.

possible to choose C,(y,z) and C,(y,z)

to satisfy oh _oF _ F,, and conclude that
oy 0Oz

P(x,y.z)= <0,Pz (x,»,2),P, (x,y,z)> will then be
a vector potential for F. (Hint: Use the fact that
V-F=0)

F(x,y,z) = <2x2yz,—2xyzz,x2y>

is divergence-free, and follow the steps outlined in
Questions 5 and 6 to find a vector potential for F.
(Answers may vary.)




Chapter 15 Application Project:
Dido’s Clever Circle

Geometric inequalities abound in mathematics, and their history stretches back thousands of years. One of the earliest is the
so-called Isoperimetric Inequality, which, in two dimensions, states that among all planar regions with a given fixed perimeter, a
circle encloses the maximum possible area. This is also known as Dido’s problem, after the tale in Virgil’s Aeneid that recounts
Dido’s cleverness in bargaining for land on which to found the city of Carthage.

A related inequality is the following, which we first present in the setting of R*. Let D be an open region of R’ which is
contained in a ball B, ofradius r. Let S denote the surface of D, and assume that S is smooth. Let J” denote the volume of D and
let A denote the area of S (that is, V' = m dV and 4= ” do). Then

D N

(o)

In this project, you will first use the Divergence Theorem to prove the above inequality and then see how the same proof
allows the inequality to be generalized to n-dimensional space. Finally, an alternative proof that illustrates the connection to the
Isoperimetric Inequality will be outlined.

1. First, note that we can assume D and B, are positioned so that B, is centered at the origin (since /' and 4 are
unchanged by moving D and B, we can just move them so that B, is centered). Let r = <x, v, z> and define F (r) =
Determine V -F.

2. Let n be the outward-pointing field of unit vectors normal to S. Show that |F . n| <r for all such n. (Hint: Consider the
Cauchy-Schwarz Inequality of Section 11.3 Exercise 69.)

3. Calculate MV -FdV exactly and use your result from Question 2 to determine an upper bound for I F-ndo|. Use

the Dlvergence Theorem to relate your results and arrive at the inequality

(o)

4. As mentioned in the introduction of Topic 1 of Section 15.8, the Divergence Theorem is true in any number of
dimensions. If we consider D to be an open region of R”, where n>2, and if we let 6D denote the boundary of D,
then it is still the case that

jF-ndo:jv-FdV,
oD D

where the integration takes place in R"" over 6D and in R" over D.In R", B, denotes the n-dimensional ball of
radius 7, which in words can be defined as all the elements of R" that lie within 7 units of the origin (we will again
assume B, is centered at the origin). With the understanding that ' = IdV and 4= I do, replicate your work in

Questions 1 through 3 (with slight modifications) to show that if D is contamed in B, then

Vs(ng.



5. To gain a better understanding of how the inequality works, consider how it applies to shapes centered at the origin in
R? (that is, consider the case n = 2) Note that in R*, ¥ (which is the volume of D) actually corresponds to the area of
D, and 4 (which is the surface area of the boundary of D) is the length of the perimeter of D. For instance, if D is the
square inscribed inside the circle of radius 7 = 1 (which corresponds to B, in R*), then V' = 2 (the area of the square)
and 4= 8/ V2 (the perimeter of the square). Note that

)

so it is indeed the case that V" <1 4. Either construct or find formulas for the area and perimeter of a regular A-sided
polygon inscribed in a unit circle, and show that the value of the area is less than half the value of the perimeter for
every k, and further, that the ratio of area over perimeter approaches § as & goes to infinity (that is, as the polygons fill
up more and more of the unit circle).

6. With D, V, and 4 defined as in Question 4, the Isoperimetric Inequality in R" states that

V(nl)/ng(ﬁj ! |4
n\[v(8,)]

where V(Br) denotes the volume of the ball of radius ». For example, in R*, where V denotes the area of a region D
and A4 denotes the length of its perimeter, the Isoperimetric Inequality says that

VS(LJAZ,
4r

with equality only in the case that D is a circle. Under the assumption that D is contained in the ball B, of radius r
centered at the origin of R”, show that the Isoperimetric Inequality again implies that

Vg(ng.




	1 Conceptual Project
	1 Application Project
	2 Conceptual Project
	2 Application Project
	3 Conceptual Project
	3 Application Project
	4 Conceptual Project
	4 Application Project
	5 Conceptual Project
	5 Application Project
	6 Conceptual Project
	6 Application Project
	7 Conceptual Project
	7 Application Project
	8 Conceptual Project
	8 Application Project
	9 Conceptual Project
	9 Application Project
	10 Conceptual Project
	10 Application Project
	11 Conceptual Project
	11 Application Project
	12 Conceptual Project
	12 Application Project
	13 Conceptual Project
	13 Application Project
	14 Conceptual Project
	14 Application Project
	15 Conceptual Project
	15 Application Project



