Chapter 7 Application Project:
Speeding Up to Slow Down

Though often overlooked by nonenthusiasts, one of the most important characteristics of a car’s engine is the torque it generates,
and subsequently, its distribution across the rpm range. A graph of the torque an engine produces, as a function of rpm, is referred
to as the engine’s torque curve. In this project, we will investigate the effect of the torque curve on a car’s power, especially on
its performance in stop-and-go city driving.

In physics texts, torque is introduced as the measure of a force’s ability to rotate an object about an axis. Specifically, when a
force is rotating a mass or a rigid body around an axis, its torque equals the product of the force and the perpendicular distance
of its line of action from the axis of rotation. (We will give a precise definition in Section 11.4.) In automotive technology,
torque is the measure of the engine’s ability to rotate the driveshaft, and ultimately, the drive wheels. It is responsible for a car’s
acceleration and, simply put, torque is what you feel when stepping on the accelerator pedal.

As you would expect, the engine’s torque rating is strongly connected to the car’s power, which is measured in horsepower (hp)
or kilowatts (kW). We will first explore this relationship, then examine how the shape of the torque curve influences acceleration
and driving feel, and later we will use integration to calculate the total energy required to accelerate a car.

In general, power is defined as the instantaneous rate at which work is done, given by the following formula.
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Since we can think of work as the transfer of energy (usually denoted by £), an alternative equation for power is as follows.
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Though we will not derive it here, the (instantaneous) power of an automotive engine with a torque output of 7 is given by the
following equation.

P=71-w 2)
The value of « is the angular velocity of the driveshaft, calculated as follows, where 6 is the angle of rotation of the driveshaft
in radians.
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1. If P(t) denotes the power output of an engine as 2. a. Given that angular velocity is measured in radians
a function of time, use Equation (1) above to show per second, and that rpm expresses the number of full
that the total work done by the engine in accelerating revolutions per minute, find the conversion factor
the car from ¢ =¢, to ¢ =¢, can be obtained from the between angular velocity and rpm. In other words, what
subsequent formula. angular velocity (in rad/s) corresponds to 1 rpm?
W= J"l P (,) dt b. Suppose an engine’s torque output is 7' Ib-ft. when
o the engine speed is N rpm. Use Equation (2) and your

answer to part a. to express the engine’s power P in
Ib-ft/s at that instant.



¢. Given that 1 horsepower (hp) equals 550 Ib-ft/s, use your answer to part b. to verify the given formula.

torque X rpm

ower =
P 5252

Power in the above formula is measured in hp, while torque is measured in 1b-ft. However, in general, power is most
often expressed using the metric system, in watts (W) or kilowatts (kW). One watt of power performs one joule of
work in one second, demonstrated as follows.
J m’
IW=1-=1kg-—
s s

When referring to automotive power, we note that since 1 watt approximately equals -i= horsepower, we obtain the
following conversions between units.

1 hp =746 W =0.746 kW

3. Suppose the graphs in Figure 1 show the torque and power curves of the 2015 and 2021 Brand X car models,
respectively. Examine the curves and answer the questions below.
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Figure 1 Torque and Power Curves of Two Brand X Car Models

a. Notice that in both graphs of Figure 1, the power curve intersects the torque curve at 5252 rpm. Is that a
coincidence? Explain.

b. Use Figure la as well as the formula you obtained in Question 2c¢ to estimate the horsepower range generated by the
2015 car’s engine when the engine is revved from 2000 to 3500 rpm. (Answers will be approximate. Note that this
is a typical rpm range in city traffic. Also notice how different your answer is from the “peak horsepower” rating
typically advertised for consumers!)

c. Repeat part b. for the 2021 edition of the car.
d. From your answers above, which car would you expect to have better acceleration in typical city driving conditions?

e. Summarize your findings in this problem by explaining why having a “flat” torque curve (as in the second
illustration above) is advantageous in city driving. (This is typical with certain turbocharged or large displacement
engines.)




4. Suppose a certain car’s torque curve can be
approximated by the function

T(x)=200sin ——
3000

on the interval (0,6500), where the independent
variable x stands for rpm.

a. Find a formula for the power function P(x) (i.e.,
the horsepower as a function of engine speed) on
the same interval.

b. Use a graphing utility to graph the functions 7'(x)
and P(x) on the interval (500,6500).

c. Suppose we accelerate the car (without shifting
gears) from 0 to 4000 rpm in 4 seconds. Assuming
that the rate of change of the engine speed is
constant, use your answer from part a. to express
the engine’s output in hp as a function of time
(in seconds) during the acceleration (i.e., find the
formula for P(1)).

. Convert your answer in part ¢. to kilowatts to obtain

a formula for the engine’s output in kilowatts as a
function of time. Then use integration by parts to find
the total work done by the engine, in kilojoules, during
this acceleration run. (Hint: Use the formula from
Question 1.)

. Suppose we accelerate the 2015 Brand X car model
from 1000 rpm to 3500 rpm in 5 seconds, without
changing gears and while keeping the rate of change
of engine speed constant. Use the Trapezoidal Rule
and Figure 1a to estimate the work done by the engine.
Express your answer in kilojoules. (Answers will be
approximate.)

. Repeat part a. above for the 2021 Brand X car model,
using Figure 1b.

. Explain why car performance enthusiasts and tuners
often refer to torque or power curves by exclaiming, “I
want as much area under the curve as possible.”

. From your answers above, as well as those given to
Question 3, would you prefer a “flat” or a “peaky”
torque curve for city driving? Why? (There are no
right or wrong answers.)

6. Figure 2 shows the torque and performance curves of various Tesla models.
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Figure 2 Torque and Power Curves of Various Tesla Models
Source: Dr. Grzegorz Sieklucki, “An Investigation into the Induction Motor of Tesla Model S Vehicle”

a. By visually examining the Tesla torque curves, explain the fundamental difference between them and those we

discussed above.

b. Based upon your observations about the graphs, explain why most electric cars have impressive acceleration in stop-

and-go city traffic.
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