

Chapter 5 Conceptual Project: Looking For a Sine

The topic of this project is the so-called *sine integral function*, which is important for its applications, most notably in electrical engineering and signal processing.

1. Consider the following piecewise-defined function.

$$f(t) = \begin{cases} \frac{\sin t}{t} & \text{if } t > 0\\ 1 & \text{if } t = 0 \end{cases}$$

Prove that for any $x \ge 0$, f(t) is integrable on [0,x].

2. The sine integral function is defined as follows.

$$\operatorname{Si}(x) = \int_0^x f(t) dt$$
, for $x \ge 0$

Prove that Si(x) is continuous.

3. Find the derivative $\frac{d}{dx} \operatorname{Si}(x)$.

- **4.** Without graphing first, write a short paragraph on why you would expect the graph of Si(x) to be oscillating. Explain why its amplitude is expected to decrease as $x \to \infty$.
- 5. Find the x-values where the relative maxima and minima of Si(x) occur.
- **6.** Extend the definition of Si(x) to negative *x*-values and prove that for any a > 0, $\int_{-a}^{a} Si(x) dx = 0$.
- 7. Use a graphing utility to plot the graph of Si(x) on the interval $[-8\pi, 8\pi]$.
- 8. Use a graphing utility to approximate the range of y = Si(x) to four decimal places.