

Chapter 4 Conceptual Project: Spot the Difference

Consider a function f(x) that is at least twice differentiable. In this project, you will show that the second derivative of f(x) at x = c can be found as the limit of so-called **second-order differences**, as follows.

$$f''(c) = \lim_{h \to 0} \frac{f(c+h) - 2f(c) + f(c-h)}{h^2}$$

1. Instead of working with a secant line through the points (c, f(c)) and (c+h, f(c+h)) like we did when approximating the first derivative, suppose that

$$y = a_1 x^2 + a_2 x + a_3$$

is the parabola through the following three points on the graph of f: (c-h, f(c-h)), (c, f(c)), and (c+h, f(c+h)). Do you expect to always be able to find coefficients $a_1, a_2, a_3 \in \mathbb{R}$ such that the resulting parabola satisfies the desired conditions? Why or why not? Why would you expect $2a_1$ to be "close" to f''(c) if h is "small"? What will happen to $2a_1$ as $h \to 0$? Write a short paragraph answering the above questions.

- **2.** By substituting the points (c-h, f(c-h)), (c, f(c)), and (c+h, f(c+h)) into $y = a_1x^2 + a_2x + a_3$, obtain a system of linear equations in unknowns a_1 , a_2 , and a_3 . Solve the system for the unknown a_1 .
- 3. Use Questions 1 and 2 to argue that f''(c) is the following limit of the second-order differences.

$$f''(c) = \lim_{h \to 0} \frac{f(c+h) - 2f(c) + f(c-h)}{h^2}$$

4. Use L'Hôpital's Rule to verify the result you found in Question 3.