

Chapter 3 Conceptual Project: Under Pressure

The following table shows the atmospheric pressure p at the altitude of k feet above sea level (pressure is measured in mm Hg; note that this unit of pressure is approximately the pressure generated by a column of mercury 1 millimeter high).

<i>k</i> (ft)	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10,000
<i>p</i> (mm Hg)	760	733	707	681	656	632	609	586	564	543	523

- 1. Find the average rate of change of air pressure from sea level to 2000 feet of altitude.
- 2. Find the average rate of change of air pressure between the altitudes of 4000 and 10,000 feet.
- 3. Use a symmetric difference quotient

$$\frac{p(c+h)-p(c-h)}{2h}$$

to estimate the instantaneous rate of change of air pressure at 7000 ft by choosing h = 1000 ft.

- 4. Tell whether you expect the answer to Question 2 or 3 to better approximate the instantaneous rate of change of air pressure at altitude 7000 ft. Explain. (Hint: Plotting the data on paper may help.)
- **5.*** Explain why you expect the symmetric difference quotient $\frac{f(c+h)-f(c-h)}{2h}$ in general to be a better approximation of the instantaneous rate of change of f at x=c than the "regular" difference quotient $\frac{f(c+h)-f(c)}{h}$.
- **6.** Use a graphing utility to find an exponential regression curve to the given data and plot the curve along with the data on the same screen.
- 7. Use the exponential function you found in Question 6 to estimate the instantaneous rate of change of air pressure at 7000 ft, and compare with your estimate given in Question 3.
- **8.** Is the instantaneous rate of change increasing or decreasing with altitude? Explain.