Chapter 2 Conceptual Project: Before Unlimited Calls

Some years ago, it was common for long-distance phone companies to charge their customers in one-minute increments. In other words, the company charges a flat fee for the first minute of a call and another fee for each additional minute or any fraction thereof (see Exercise 82 in Section 2.5). In this project, we will explore in detail a function that gives the cost of a telephone call under the above conditions.

- 1. Suppose a long-distance call costs 75 cents for the first minute plus 50 cents for each additional minute or any fraction thereof. In a coordinate system where the horizontal axis represents time t and the vertical axis price p, draw the graph of the function p = C(t) that gives the cost (in dollars) of a telephone call lasting t minutes, $0 < t \le 5$.
- **2.** Does $\lim_{t\to 1.5} C(t)$ exist? If so, find its value.
- 3. Does $\lim_{t \to 3} C(t)$ exist? Explain.
- **4.** Write a short paragraph on the continuity of this function. Classify all discontinuities; mention one-sided limits and left or right continuity where applicable.

- 5. In layman's terms, interpret $\lim_{t \to 2.5} C(t)$.
- **6.** In layman's terms, interpret $\lim_{t \to 3^-} C(t)$.
- 7. In layman's terms, interpret $\lim_{t\to 3^+} C(t)$.
- **8.** If possible, find C'(3.5).
- **9.** If possible, find C'(4).
- 10. Find and graph another real-life function whose behavior is similar to that of C(t). Label the axes appropriately and provide a brief description of your function.