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Chapter 13 Conceptual Project:
Exactly the Difference

In this project you will use your experience with partial derivatives and differentials to learn how to solve an important class of
differential equations, called exact equations. Ordinary differential equations of this type are noted for their widespread applications
in physics and engineering. (See Section 8.1 for the definitions of differential equation and solution. Other than the basic definitions,
this project does not directly rely on, and can be considered independently of Chapter 8.)

1. Suppose that the first-order partial derivatives of the 4. Use Question 3 to determine which of the following

function z = f(x,) are both continuous on a region
R.If cis aconstantand y = y(x) is defined implicitly
by the equation f(x,y)=c, show that y solves the
differential equation
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. Now consider a differential equation of the form
M(x,y)dx-i—N(x,y)dyzO (1)

and assume that there is a two-variable function
Vi (x, y) such that

af(x,y)
ox

= M(x,y) and af(x,y)

=N(x,»)

(such a differential equation is called exact, while
f(x,y) is called a potential function). Use your
answer to Question 1 to show that the set of level
curves f (x, y) =(C, CeR form a family of solutions
of the differential equation (1).

. Suppose that M (x, y) and N (x, y), as well as their
first-order partial derivatives, are continuous on an
open region R. Show that a necessary condition for
equation (1) to be exact is the following equality.

8M(x,y) B aN(x,y)
o o

(Note: If we require a bit more of R, the above
condition is also sufficient for exactness, a statement we
will not rigorously prove here, but the construction of a
potential function under the stated conditions is outlined
in Questions 5 and 6.)

equations is exact.

a. (2x+ye"y)dx+(xe"y —l)dy =0

b. [3x2y—%]dx+(x3 —\/;)dy =0

Explain why the potential function f of an exact
equation must satisfy

f ()= [M(x,y)dc+g(»),
where g is some function of the variable y.

Show that if the equation (1) is exact, then the equality
0 :
N(x,y) = 5J.M(x,y)dx+g (y)
must hold.

Use Questions 5 and 6 to solve the equation

2(x—y2 )dx+y(9y—4x)dy =0 by determining its
potential function f'(x,y) and identifying the family
of solutions as f'(x,y)=C. (Hint: After identifying
M(x,y) and N(x,y), use Question 5 to obtain a
tentative formula for f'(x,y), then use Question 6 to
determine the unknown function g ( y) J)

. Verify that the equation (2+x)ydx+2xdy =0

becomes exact after multiplying by the integrating
factor 7/ (x, y) = xye". Solve the resulting equation.
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