
Chapter 13 Application Project: 
Houston, We Have Liftoff!
In the Chapter 6 Application Project, we derived the velocity function for a rocket that is applicable to its first few moments after 
blastoff. Our analysis assumed that gravity during the first few moments can be considered to be constant and, at the same time, 
is an important factor in determining the rocket’s velocity. That velocity function can be expressed as
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where ve  is the (positive) magnitude of the relative exhaust velocity of the expelled gas, m0  is the initial total mass of the rocket 
(including fuel), m t� �  is the combined mass of the rocket and fuel at time t, and g is the acceleration due to gravity. After the 
initial blastoff phase, drag due to gravity is a less important factor in calculating change in velocity, and equation (1) is often 
reduced to
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where ∆v  represents the change in velocity over a period in which fuel is burned and the combined mass of the rocket and fuel 
is reduced from m0  to mf .  Equation (2) is the classic rocket propulsion equation that was derived independently by the Russian 
rocket scientist Konstantin Tsiolkovsky, the American Robert H. Goddard, and the German Hermann Oberth in the first couple 
decades of the 20th century, and also in the early 19th century by the British mathematician William Moore.

In modern practice, booster rockets are often used to overcome drag due to gravity and atmospheric resistance in the initial 
blastoff phase, after which they are jettisoned. The booster rockets are attached to the sides of a central stacked column of rocket 
stages, each of which is also jettisoned in sequence until only the payload remains, with the goal of accelerating the payload to a 
final desired velocity v f .  Rocket stages (and booster rockets) are used so that the mass of the remaining rocket can be decreased 
as each stage is detached.

In this project, you will derive a formula for the relative masses of each stage of a two-stage rocket given the goal of minimizing 
total mass and achieving a given final velocity for the payload. We will assume that gravitational and atmospheric drag factors 
are overcome by booster rockets, and hence that only equation (2) need be considered in designing the central stack consisting 
of two stages and a payload.



	 1.	 Let m1  and m2  denote the masses of, respectively, 
the first and second stages of the rocket when they are 
filled with fuel, and let P be the mass of the payload. 
Assume that the mass of each stage, when emptied 
of fuel, is the product of a structural factor s and its 
fuel-filled mass, where s is a positive number between 
0 and 1 (s is typically less than 0.1). Then the initial 
mass of the stack consisting of two stages and payload 
is m m P

1 2
+ + ,  and the mass after the fuel of stage 1 

is expended is sm m P
1 2
+ + .  Similarly, after stage 1 

is jettisoned, the initial mass of the stack consisting 
of stage 2 and payload is m P2 +  and its mass after 
the fuel of stage 2 is expended is sm P

2
+ .  If we let 

∆v1  denote the change in velocity of the initial stack 
due to the fuel of stage 1 being burned, and ∆v2  the 
change in velocity of the second stage and payload 
due to the fuel of stage 2 being burned, then the final 
velocity achieved by the payload is v v vf � � � �

1 2
.  

Use these labels and equation (2) to express v f  as a 
function of m

1
,  m

2
,  s, ve ,  and P. Name the function 

you construct g, and since m1  and m2  are the two 
quantities we are free to vary, we will consider g to be 
a function of the variables m1  and m

2
.

	 2.	 Our goal is to minimize the function 
f m m m m P
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,� � � � �  subject to the constraint 

g m m v f1 2
,� � � ,  and we will use the method of 

Lagrange multipliers to do so. The method is difficult 
to apply to f and g as originally defined, but it becomes 
much more tractable if we make a change of variables. 
To that end, let 
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		  With these definitions, show that 
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		  and consequently that 
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	 3.	 Note that an ordered pair m m
1 2
 ,� �  that minimizes 

the function f m m m m P
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,� � � � �  will 

minimize the expression m m P
P
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,  and hence 

will also simultaneously minimize the expression 
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.  The reasoning behind this is identical 

to the observation in Examples 3 and 4 of Section 13.8 
that minimizing the square of a given distance 
function simultaneously minimizes the original 
distance function. Consequently, and because it makes 
the task easier, we will minimize the expression 
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,  which means we will minimize 
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		  subject to the constraint 
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, ln ln� � � � � � � � � .  Use the method 
of Lagrange multipliers to show that the minimum of 
f  occurs when
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		  (Hint: Use properties of logarithms to rewrite f  
before differentiating.)
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	 5.	 The Falcon 9 two-stage rocket by SpaceX is capable 
of lifting a payload of approximately 23 metric tons to 
low Earth orbit. Assuming a structural factor s = 0 04. ,  
exhaust velocity ve = 3 5. km s,  and final velocity 
v f =10 km s,  determine m1  and m

2
.

�Sources:  en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation; en.wikipedia.org/wiki/Multistage_rocket; and Christopher S. Vaughen, “Multivariable and Vector Calculus,” 
Chapter 5 in The Kerbal Math & Physics Lab, sites.google.com/view/kspmath
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