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Chapter 13 Application Project:
Houston, We Have Liftoff!

In the Chapter 6 Application Project, we derived the velocity function for a rocket that is applicable to its first few moments after
blastoff. Our analysis assumed that gravity during the first few moments can be considered to be constant and, at the same time,
is an important factor in determining the rocket’s velocity. That velocity function can be expressed as

- gt, (1)

(1)

where v, is the (positive) magnitude of the relative exhaust velocity of the expelled gas, m, is the initial total mass of the rocket
(including fuel), m(t) is the combined mass of the rocket and fuel at time ¢, and g is the acceleration due to gravity. After the
initial blastoff phase, drag due to gravity is a less important factor in calculating change in velocity, and equation (1) is often
reduced to

v(t) =v,In

Av=v,In0, )
my
where Av represents the change in velocity over a period in which fuel is burned and the combined mass of the rocket and fuel
is reduced from m, to m . Equation (2) is the classic rocket propulsion equation that was derived independently by the Russian
rocket scientist Konstantin Tsiolkovsky, the American Robert H. Goddard, and the German Hermann Oberth in the first couple
decades of the 20™ century, and also in the early 19" century by the British mathematician William Moore.

In modern practice, booster rockets are often used to overcome drag due to gravity and atmospheric resistance in the initial
blastoff phase, after which they are jettisoned. The booster rockets are attached to the sides of a central stacked column of rocket
stages, each of which is also jettisoned in sequence until only the payload remains, with the goal of accelerating the payload to a
final desired velocity v,. Rocket stages (and booster rockets) are used so that the mass of the remaining rocket can be decreased
as each stage is detached.

In this project, you will derive a formula for the relative masses of each stage of a two-stage rocket given the goal of minimizing
total mass and achieving a given final velocity for the payload. We will assume that gravitational and atmospheric drag factors
are overcome by booster rockets, and hence that only equation (2) need be considered in designing the central stack consisting
of two stages and a payload.
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1. Let m, and m, denote the masses of, respectively, 3. Note that an ordered pair (,’nvl ., ) that minimizes
the first and second stages of the rocket when they are

filled with fuel, and let P be the mass of the payload. the function f (m,,m,)=m, +m,+P will

Assume that the mass of each stage, when emptied L . m+my+P
) ” minimize the expression ———=——, and hence
of fuel, is the product of a structural factor s and its
fuel-filled mass, where s is a positive number between will also simultaneously minimize the expression
i i initi +m, + P . . o .
0 and 1 (s is typically 1.es.s than 0.1). Then the initial It m, . The reasoning behind this is identical
mass of the stack consisting of two stages and payload P
is m, +m, + P, and the mass after the fuel of stage 1 to the observation in Examples 3 and 4 of Section 13.8
is expended is sm, +m, + P. Similarly, after stage 1 that minimizing the square of a given distance
is jettisoned, the initial mass of the stack consisting function simultaneously minimizes the original
of stage 2 and payload is m, + P and its mass after distance function. Consequently, and because it makes
the fuel of stage 2 is expended is sm, + P. If we let the task easier, we will minimize the expression
Av, denote the change in velocity of the initial stack m, +m,+ P . .
; In———=——, which means we will minimize
due to the fuel of stage 1 being burned, and Av, the
change in velocity of the second stage and payload 2
. -~ m, +m, + P (I_S) nn,
due to the fuel of stage 2 being burned, then the final f (nl ,nz) =ln——-+ =In
velocity achieved by the payload is v, = Av, +Av,. P (1 s )(1 B SnZ)
Use these labels and equation (2) to express v, asa . .
function of m,, m,, s, v,, and P. Name the function subject to the constraint
you construct g, and since m, and m, are the two g(nl,nz) =v, 1r1(n1 ) +v, 1n(n2) =v,. Use the method
quantities we are free to vary, we will consider g to be of Lagrange multipliers to show that the minimum of
a function of the variables m, and m,. JAf occurs when
2. Our goal is to minimize the function 0= = /)
f(my,m,)=m, +m,+P subject to the constraint b ’
g(my,m,)=v,, and we will use the method of (Hint: Use properties of logarithms to rewrite 7
Lagrange multipliers to do so. The method is difficult before differentiating.)
to apply to f'and g as originally defined, but it becomes n, -1
much more tractable if we make a change of variables. 4. Show that m, = 1 P and that
—sn,
To that end, let
n, —1
m, = m, + P).
sm, +m, + P sm, + P

5. The Falcon 9 two-stage rocket by SpaceX is capable
of lifting a payload of approximately 23 metric tons to
(1 _S)”l _m+m,+ P q (1 - S)”lz _m,+ P low Earth orbit. Assuming a structural factor s =0.04,
1-sn, - m, + P an 1-sm, T~ p exhaust velocity v, =3.5 km/s, and final velocity
v, =10km/s, determine m, and m,.

With these definitions, show that

and consequently that

m +m,+P [ m+m,+P | m+P
P m,+P P

(1 - s)2 mn,

(1—Sn1)(1—sn2).

Sources: en.wikipedia.org/wiki/Tsiolkovsky rocket equation; en.wikipedia.org/wiki/Multistage rocket; and Christopher S. Vaughen, “Multivariable and Vector Calculus,”
Chapter 5 in The Kerbal Math & Physics Lab, sites.google.com/view/kspmath
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