
Chapter 10 Conceptual Project: 
Working in Harmony
In this project, we are going to expand on our earlier work with the harmonic series. In the process, we will meet a famous constant 
called Euler’s constant, also known as the Euler-Mascheroni constant. (This number is not to be confused with e ≈ 2.71828, the 
natural base, which is also known as Euler’s number.)

	 1.	 As in Example 6 of Section 10.2, we let sn stand for the 
nth partial sum of the harmonic series; that is,

s
nn � � � �1

1

2

1
 .

		  (The partial sum sn is also called the nth harmonic 
number.) For each n ≥ 1, we define 

d s nn n� � ln .

		  Prove that dn > 0 for any positive integer n. 
(Hint: Refer to the illustration provided for 
Exercise 65 of Section 10.2, and start by comparing sn 
with 1
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	 2.	 Prove that dn� �  is a decreasing sequence. 
(Hint: Referring again to the figure from Exercise 65 
of Section 10.2, fix an n and identify a region whose 
area is d dn n� �1.)

	 3.	 Use an appropriate theorem from the text to show 
that the sequence dn� �  is convergent. Letting 
g �

��
lim ,
n nd  this limit is called Euler’s constant. 

It is important in many applications throughout 
various areas of mathematics, and like other famous 
constants (including p and e) can be approximated 
with great precision using modern computing power. 
Surprisingly, however, it is not yet known whether g is 
rational or irrational!

	 4.	 Use the convergence of dn� �  to prove that the 
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 converges and find its limit.

	 5.	 Use a computer algebra system to approximate g, 
accurate to the first 10 decimal places.

	 6.	 Use the approximate value of g found in Question 5 
to estimate sn , rounded to 5 decimal places, for 
a. n = 10,000 and b. n = 2,000,000. Compare the latter 
estimate with the answer for Exercise 125b of the 
Chapter 10 Review.
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