

Chapter 15 Conceptual Project: Showing Your Potential

Recall from Section 15.7 that if **F** is a vector field in \mathbb{R}^3 so that $\nabla \times \mathbf{F} = \mathbf{0}$ (such vector fields are called curl-free) on an open, simply connected domain in space, then **F** is conservative, that is, there is a scalar potential f so that $\nabla f = \mathbf{F}$. On the other hand, it can be shown that if **F** is divergence-free, that is, if $\nabla \cdot \mathbf{F} = \mathbf{0}$, then there is a vector field **P** such that $\nabla \times \mathbf{P} = \mathbf{F}$ (such a vector field is called a *vector potential* for **F**). In this project you will discover a way of finding a vector potential for a given divergence-free vector field **F**.

1. Suppose

$$\mathbf{F}(x,y,z) = \langle F_1(x,y,z), F_2(x,y,z), F_3(x,y,z) \rangle$$

and

$$\mathbf{P}(x,y,z) = \langle P_1(x,y,z), P_2(x,y,z), P_3(x,y,z) \rangle$$

are vector fields so that $\nabla \times \mathbf{P} = \mathbf{F}$; that is, \mathbf{P} is a vector potential for \mathbf{F} . Show that for any differentiable scalar field f, $\nabla \times (\mathbf{P} + \nabla f) = \mathbf{F}$; that is, $\mathbf{P} + \nabla f$ is another vector potential for \mathbf{F} . (**Hint:** See Exercise 41 of Section 15.4.)

- **2.** If f is any scalar field such that $\frac{\partial f}{\partial x} = -P_1$, show that if we define $\hat{P} = P + \nabla f$, then $\hat{P}_1 = 0$.
- **3.** Use Questions 1 and 2 to argue that if the vector field **F** has a vector potential **P**, then it has one whose first component is zero. In other words, we may assume throughout our discussion that $\mathbf{P} = \langle 0, P_2, P_3 \rangle$.

In Questions 4–6, you will be guided to show that given a divergence-free vector field **F**, it is possible and fairly straightforward to find a vector potential of the form described in Question 3.

4. Assume that

$$\mathbf{F}(x,y,z) = \langle F_1(x,y,z), F_2(x,y,z), F_3(x,y,z) \rangle$$

is a vector field such that $\nabla \cdot \mathbf{F} = 0$, and **P** is any vector field of the form $\mathbf{P} = \langle 0, P_2, P_3 \rangle$. Show that **P** is a vector potential for **F** if the following equalities hold.

$$\frac{\partial P_3}{\partial v} - \frac{\partial P_2}{\partial z} = F_1 \qquad -\frac{\partial P_3}{\partial x} = F_2 \qquad \frac{\partial P_2}{\partial x} = F_3$$

5. For the vector field **F** in Question 4, define $P_2(x,y,z) = \int_{x_0}^x F_3(t,y,z) dt + C_2(y,z) \text{ and}$ $P_3(x,y,z) = -\int_{x_0}^x F_2(t,y,z) dt + C_3(y,z), \text{ where }$ $x_0 \text{ is an arbitrary starting value and } C_2 \text{ and } C_3 \text{ are arbitrary functions of the variables } y \text{ and } z. \text{ Show that }$ $\mathbf{P}(x,y,z) = \left\langle 0, P_2(x,y,z), P_3(x,y,z) \right\rangle \text{ satisfies the last two equations in Question 4.}$

- 6. Show that in Question 5, it is always possible to choose $C_2(y,z)$ and $C_3(y,z)$ to satisfy $\frac{\partial P_3}{\partial y} \frac{\partial P_2}{\partial z} = F_1$, and conclude that $\mathbf{P}(x,y,z) = \langle 0, P_2(x,y,z), P_3(x,y,z) \rangle$ will then be a vector potential for **F**. (**Hint:** Use the fact that $\nabla \cdot \mathbf{F} = 0$.)
- 7. Show that the vector field

$$\mathbf{F}(x,y,z) = \langle 2x^2yz, -2xy^2z, x^2y \rangle$$

is divergence-free, and follow the steps outlined in Questions 5 and 6 to find a vector potential for **F**. (Answers may vary.)