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Appendix A  Fundamentals of Mathematica
Mathematica is a powerful and flexible software package with a wide variety of uses. To begin with, Mathematica (along with 
similar products such as Maple, MATLAB, and Derive) can be viewed as a sort of supercalculator. It also understands the rules 
of algebra, has a huge number of built-in functions ranging from the trivial to the exotic, and is very good at generating high-
quality graphs in one, two, and three dimensions. Beyond that, a package such as Mathematica is also a programming environment; 
it is this aspect of Mathematica that allows the user to extend its capabilities to suit specialized needs.

The optional use of Mathematica and similar technology in 
this text requires only a basic familiarity; this appendix will 
serve as a quick guide to the use of Mathematica. It should also 
be noted that a complete guide to Mathematica can be found 
within the program itself. Once it is installed and running on 
your computer, clicking on the “Help” button located in the top 
toolbar (see Figure 1) gives you access to an electronic version 
of a very large Mathematica user’s manual. After clicking 
on “Help” a drop-down menu appears, and after clicking on 
“Wolfram Documentation” the full selection of “Help” categories 
appears. A good place to begin is with “Fast Introductions” in 
the Resources section of the screen. Selecting Fast Introductions 
will allow you to then choose “For Programmers” or “For Math 
Students” (either choice will open up a web page, so you must 
be connected to the internet to proceed). The “For Math Students” option contains a comprehensive guide and many useful 
examples of Mathematica commands, while the “For Programmers” option is appropriate for those who want to delve further 
into Mathematica’s capabilities.

At first, you will probably be making use of built-in Mathematica commands such as Plot, Fit, and Solve (as opposed 
to using your own user-defined commands). It is important to realize that Mathematica is case sensitive and that all built-in 
commands begin with a capital letter. Once a command has been typed in, you’ll need to tell Mathematica to execute it. This 
can be done in one of two ways—either by pressing  and  together (known as  + ) or, if you are using 
an extended keyboard, by using the  that appears in the numeric keypad area. Pressing  alone will simply move the 
cursor to the next line and allow you to continue typing but will not execute any commands.

Each time you press  + , Mathematica will execute all the commands contained in a single cell. Different 
Mathematica cells are demarcated by brackets along the right-hand edge of the work area, and you can always start a new cell 
by positioning the mouse cursor over a blank part of the area (you will notice that the cursor symbol becomes horizontal rather 
than vertical) and clicking the left mouse button once.

The remainder of this appendix contains examples of a few of the basic Mathematica commands used in this text, arranged roughly 
in the order in which they appear. For instant on-screen help on any command, type the command into Mathematica and then press 

. Doing so will bring up the relevant help pages and, more often than not, provide examples of how the command is used.

Basic Mathematica Commands

Defining Functions
A few rules of syntax must be observed in order to define your own functions in 
Mathematica. The first is that each variable serving as a placeholder in the definition 
must be followed by the underscore symbol “_” when it appears on the left side of 
the definition and without the underscore when it appears on the right. The second 
rule is that “:=” (a colon followed by an equal sign) is used in the definition, as 
opposed to “=” (see the on-screen Mathematica help for detailed explanations of 
these rules). Figure 2 illustrates the definition of the two functions f x x� � � �2

5  
and g x y x y, ,� � � �3 7  followed by an evaluation of each.

Figure 1  Getting On-Screen Help

In[1]:= f�x_� :� x^2 � 5
In[2]:= g�x_, y_� :� 3 x � 7 y
In[3]:= f��2�

Out[3]= 9

In[4]:= g�5, 2�
Out[4]= 1

Figure 2  Defining Functions
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Plot
The basic usage of the Plot command is 
Plot[ f ,{x,  xmin,  xmax}], where  f  is an 
expression in x representing a function to be 
plotted and xmin and xmax define the endpoints 
of the interval on the x-axis over which   f  is 
to be graphed. However, the Plot command 
also recognizes many options that modify the 
details of the resulting picture; these options 
are best explored via the on-screen help. 
Figure 3 illustrates the use of Plot in graphing 
the function f x x x x� � � � � �3 2

3 5 over the 
interval �� �3 4, .

Piecewise
The Piecewise command allows us to easily create and use functions in Mathematica that correspond to the piecewise-defined 
functions referred to in this and many other math texts. See Section 1.2 for an example of the use of the Piecewise command.

Manipulate
The Manipulate command is a powerful tool that is useful in making dynamic models in Mathematica. Such models are 
especially useful in exploring the effect of changing the value(s) of parameter(s); see Section 1.5 for an example of such usage.

Limit
The built-in command Limit is used to direct Mathematica to try to determine the limit of a function at a specified point, with 
the option of asking for one-sided limits from either direction. See Section 2.2 and Figure 4 for examples of the command’s use.

In[12]:= Limit��2 x � 1� � �x � 1�, x � 1, Direction � 1�
Limit��2 x � 1� � �x � 1�, x � 1, Direction � �1�
Limit��2 x � 1� � �x � 1�, x � Infinity�

Out[12]= ��

Out[13]= �

Out[14]= 2
�4 �2 2 4 6 8 10

�4
�2

2
4
6
8

10

Figure 4a  Use of the Limit Command Figure 4b  y
x
x

�
�
�

2 1

1

Differentiation (D Command)
The basic usage of the built-in differentiation command D is D[ f , x], 
where  f  is a function of the variable x. Figure 5 illustrates such use in 
finding the derivative of a given rational function; note the optional 
use of the Together command (discussed later in this appendix) to 
express the derivative as a single fraction.

If  f  is a function of more than one variable, the D command can be 
used to find partial derivatives.

In[5]:= Plot�x^3 � x^2 � 3 x � 5, �x, �3, 4��

Out[5]=

�3 �2 �1 1 2 3 4

�5

5

10

15

Figure 3  Basic Use of the Plot Command

In[17]:= f�x_� :� �x^2 � 3 x � 1� � �x � 5�
In[18]:= D�f�x�, x�

Out[18]=
�3 � 2 x

5 � x
�
1 � 3 x � x2

�5 � x�2
In[19]:= Together�D�f�x�, x��

Out[19]=
�16 � 10 x � x2

�5 � x�2
Figure 5  Differentiation
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Curve Fitting (Fit Command)
The Mathematica command Fit can be used to construct a function of specified form (such as linear, quadratic, exponential, 
etc.) to a given set of data (i.e., ordered pairs) using the least-squares method. Figure 6 illustrates the use of Fit to construct both 
a linear and a quadratic function that best fits the given set of four data points. Note also the use of the ListPlot, Plot, and 
Show commands to create graphs of the data and the two best-fitting functions. Two options are shown in the ListPlot usage, 
one of which (PlotStyle) specifies the color and size of the points to be plotted, and the other of which (AxesOrigin) 
positions the axes in a certain manner. (For an exponential fit, try out the command Fit[data, {1, Exp[x]}, x].)

In[6]:= data � ��1, 2�, �2, 2�, �3, 3�, �4, 5��
Out[6]= ��1, 2�, �2, 2�, �3, 3�, �4, 5��
In[7]:= g1 � ListPlot�data, PlotStyle � �Red, PointSize�Large��, AxesOrigin � �0, 0��

Out[7]=

1 2 3 4

1

2

3

4

5

In[8]:= linearfit � Fit�data, �1, x�, x�
quadraticfit � Fit�data, �1, x, x^2�, x�

Out[8]= 0.5 � 1. x

Out[9]= 3. � 1.5 x � 0.5 x2

In[10]:= g2 � Plot��linearfit, quadraticfit�, �x, �1, 5��;
Show�g2, g1�

Out[11]=

�1 1 2 3 4 5

2

4

6

8

Figure 6  Linear and Quadratic Curve Fitting

Solve
The Solve command is very powerful, and can be used in several different ways. Its basic usage is Solve[expr, vars], where 
expr represents one or more equations and vars represents one or more variables. If more than one equation is to be solved, the 
collection of equations must be enclosed in a set of braces, separated by commas. Similarly, if more than one variable is to be 
solved for, the variables must be enclosed in a set of braces. Figure 7 shows the use of Solve to first solve one equation for one 
variable, and then to solve a collection of three equations for all three variables. Note how Mathematica expresses the solution 
in each case.
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In[15]:= Solve�3 x � x � y � 9 y, y�
Out[15]= ��y � 3 x

9 � x
��

In[16]:= Solve��3 x � 2 y � 4 z � 8, 4 x � 5 z � �3, 7 y � z � 12�, �x, y, z��
Out[16]= ��x � � 50

3
, y �

53

15
, z � �

191

15
��

Figure 7  Two Uses of the Solve Command

It is important to note that equations in Mathematica are expressed with two “=” symbols, as seen in Figure 7. The use of just 
one “=” is reserved for assigning a permanent value to something. For instance, the expression x=3 assigns the value of 3 to the 
symbol x, while the expression x==3 represents the equation x = 3 in Mathematica.

NSolve
The NSolve command is used in a manner similar to Solve, but typically in situations where an exact solution is either not 
desired or not feasible. See Section 2.5 for an example of the use of the command in finding a numerical approximation of a solution.

FindRoot
The FindRoot command uses numerical methods (such as Newton’s method, Section  4.5) to find approximate roots of 
functions, and is especially useful when neither Solve nor NSolve is able to provide a satisfactory result. Its basic usage is 
FindRoot[ f , {x, x0}] when the goal is to find a root of the function  f  near a given point x0, but it can also be used to find 
a numerical solution of the equation lhs = rhs near x0 if used in the form FindRoot[lhs == rhs, {x, x0}] (note the “double 
equal sign” used by Mathematica to denote an equation).

FindMaximum and FindMinimum
The usage of the commands FindMaximum and FindMinimum is similar to that of FindRoot, and both also rely on 
numerical methods to obtain results. To approximate the location and value of a local maximum of the function  f  near a given 
point x0, the syntax is FindMaximum[ f , {x, x0}]; the use of FindMinimum is identical. Figure 8 illustrates the use of 
FindMinimum to identify the radius r that minimizes the surface area of the cylinder of Example 3 in Section 4.6. 

In[20]:= FindMinimum�2 � Pi � r^2 � 1000 � r, �r, 5��
Out[20]= �348.734, �r � 4.30127��

Figure 8  Use of FindMinimum

Integrate
The Integrate command can be used for both indefinite and definite integration, with the goal determined by the options used 
with the command. Figure 9 illustrates how Mathematica provides both the indefinite integral of the rational function 1 1

2x �� �  
and the definite integral of the same function over the interval �� �1 5 1 5. , . .  (Note that Mathematica does not provide an arbitrary 
constant when evaluating indefinite integrals.)

In[21]:= Integrate�1 � �x^2 � 1�, x�
Out[21]= ArcTan�x�
In[22]:= Integrate�1 � �x^2 � 1�, �x, �1.5, 1.5��

Out[22]= 1.96559

Figure 9  Integration
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Other Useful Commands

Simplify
The Simplify command is used to simplify mathematical expressions according to the usual rules of algebra. The basic syntax 
is Simplify[expr], where expr is the expression to be simplified. Note the examples shown in Figure 10.

In[23]:= Simplify�x � �4 x � 2 x � y� � �6 x^2��
Out[23]=

2 � y

3

In[24]:= Simplify��a^2 � b^2� � �a � b��
Out[24]= a � b

Figure 10  Use of Simplify

Expand
This command is used to multiply out factors in an expression. The syntax for the command is Expand[expr]. Figure 11 shows 
the use of the command in multiplying out the expression x y�� �5

.

In[25]:= Expand��x � y�^5�
Out[25]= x5 � 5 x4 y � 10 x3 y2 � 10 x2 y3 � 5 x y4 � y5

Figure 11  Use of Expand

Factor
The Factor command is the reverse of the Expand command when applied to polynomials. Its basic usage is Factor[poly], 
where poly is a polynomial expression to be factored.

Together
The Together command is used primarily to express a sum (or difference) of two or more rational expressions as one with 
a common denominator, automatically canceling any common factors that may appear. The basic syntax for the command is 
Together[expr]. 
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Appendix B  Properties of Exponents and Logarithms, 
Graphs of Exponential and Logarithmic Functions
For ease of reference, the basic algebraic properties of exponents and logarithms and the general forms of exponential and 
logarithmic graphs appear below. Interestingly, the Scottish mathematician John Napier (1550–1617) introduced logarithms as 
an aid to computation, and their use led to the development of various types of slide rules and logarithm tables. It was only later 
that mathematicians made the connection between logarithmic and exponential functions, namely that they are inverses of each 
other (more precisely, an exponential function of a given base is the inverse function of the logarithmic function with the same 
base, and vice versa). This fact appears explicitly as the first property of logarithms below, with the other properties reflecting, 
directly or indirectly, the same fact.

Properties of Exponents
Given real numbers x and y and positive real numbers a and 
b, the following properties hold.

1.	 a a ax y x y� �

2.	 a
a

a
x

y
x y� �

3.	 a ax y xy� � �

4.	 ab a bx x x� � �

Properties of Logarithms
Given positive real numbers x, y, a, and b, with a ≠ 1 and b ≠ 1, 
and real number r, the following properties hold.

1.	 log a
yx y x a� � �

2.	 log a
xa x� � �

3.	 a xa xlog =

4.	 log log loga a axy x y� � � �

5.	 log log loga a a
x
y

x y� �

6.	 log loga
r

ax r x� � �

Change of logarithmic base: log
log

log
b

a

a

x
x
b

=

Change of exponential base: a b bx a x ab
x

b� �� �log log  

(in particular, a e ex a x a
x

� �� �ln
ln

)

Graphs of Exponential and 
Logarithmic Functions

y = x

y ax=

y xa= log

x

y

1

3
4

−2
−3
−4

1 3 5−1

5

−3−5

Figure 1  Case 1: 0 < a < 1

y = x

y ax=

y xa= log

x

y

1
2
3
4

−2
−3
−4

1 3 5−1

5

−3−5

Figure 2  Case 2: a > 1
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Appendix C  Trigonometric and Hyperbolic Functions
The historical records of trigonometry date back to the second millennium BC, and we know of a number of different cultures 
(Egyptian, Babylonian, Indian, and Greek among them) that studied and used the properties of triangles. Our word “trigonometry” 
comes from an ancient Greek word meaning “triangle measuring,” and the names of the individual trigonometric functions 
have similarly ancient roots. The study of how different cultures independently discovered the basic tenets of trigonometry, how 
trigonometric knowledge was further developed and disseminated, and how early civilizations used trigonometry for scientific 
and commercial purposes is fascinating in its own right and well worth exploring. Many excellent resources for such exploration 
are available online, in books, and in scholarly articles.

In contrast, the history of hyperbolic functions dates back only to the 18th century AD; the Italian mathematician Vincenzo Ricatti 
(1707–1775) and the Swiss mathematicians Johann Heinrich Lambert (1728–1777) and Leonhard Euler (1707–1783) were 
among the first to recognize their utility. But their development and characteristics have much in common with trigonometric 
functions, and they are useful today when solving differential equations and as antiderivatives of certain commonly occurring 
expressions.

For the purpose of quick reference, this appendix contains the basic definitions and graphs of the trigonometric and hyperbolic 
functions, along with frequently used identities and associated concepts.

Basic Definitions and Graphs

Radian and Degree Measure
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1
180

1
180

180

� �
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�
�

�
�
�
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
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��

�
�

�
�
�
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A

Arc Length Area of a Sector
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�
�

�
�
�� � �θ
π

π θ
2
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� �
�
�

�
�
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π
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θ
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2
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θ
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Trigonometric Functions

y

x
0 x

r y

θ

x,0( )

x y,( )

sin q =
y
r

csc ( )q � �
r
y

y for 0

cosq =
x
r

sec )q � �
r
x

x (for 0

tan )q � �
y
x

x (for 0 cot )q � �
x
y

y (for 0
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Commonly Encountered Angles

qq 0° 30° 45° 60° 90° 180° 270°

Radians 0
p
6

p
4

p
3

p
2

p
3

2

p

sin qq 0
1

2

1

2

3

2
1 0 -1

cos qq 1
3

2

1

2

1

2
0 -1 0

tan qq 0
1

3
1 3 — 0 —

Trigonometric Graphs
Sine Cosine Tangent

y x= sin

x

y

1

−1

π 2ππ
2

3
2
π

y x= cos

x

y

1

−1

π 2ππ
2

3
2
π

y x= tan

x

y

π 2ππ
2

3
2
π

Cosecant Secant Cotangent
y x= csc

x

y

1

−1

π 2ππ
2

3
2
π

y x= sec

x

y

1

−1

π 2ππ
2

3
2
π

y x= cot

x

y

π 2ππ
2

3
2
π

Trigonometric Identities

Reciprocal Identities

csc
sin

x
x

=
1

sec
cos

x
x

=
1

cot
tan

x
x

=
1

sin
csc

x
x

=
1

cos
sec

x x=
1

tan
cot

x x=
1

Cofunction Identities

cos sinx x� ��
�
�

�
�
�

p
2

sin cosx x� ��
�
�

�
�
�

p
2

csc secx x� ��
�
�

�
�
�

p
2

sec cscx x� ��
�
�

�
�
�

p
2

cot tanx x� ��
�
�

�
�
�

p
2

tan cotx x� ��
�
�

�
�
�

p
2

A-9
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Quotient Identities

tan
sin

cos
x x

x
= cot

cos

sin
x x

x
=

Period Identities

sin sinx x�� � �2p csc cscx x�� � �2p

cos cosx x�� � �2p sec secx x�� � �2p

tan tanx x�� � �p cot cotx x�� � �p

Even/Odd Identities

sin sin�� � � �x x cos cos�� � �x x tan tan�� � � �x x

csc csc�� � � �x x sec sec�� � �x x cot cot�� � � �x x

Pythagorean Identities

sin cos
2 2

1x x� � tan sec
2 2

1x x� �

1
2 2� �cot cscx x

Sum and Difference Identities

sin sin cos cos sinu v u v u v�� � � �

sin sin cos cos sinu v u v u v�� � � �

cos cos cos sin sinu v u v u v�� � � �

cos cos cos sin sinu v u v u v�� � � �

tan
tan tan

tan tan
u v u v

u v
�� � � �

�1

tan
tan tan

tan tan
u v u v

u v
�� � � �

�1

Double-Angle Identities

sin sin cos2 2u u u=

cos cos sin cos sin2 2 1 1 2
2 2 2 2u u u u u� � � � � �

tan
tan

tan
2

2

1
2

u u
u

�
�

Power-Reducing Identities

sin
cos2 1 2

2
x x
�

�

cos
cos2 1 2

2
x x
�

�

tan
cos

cos

2 1 2

1 2
x x

x
�

�
�

Half-Angle Identities

sin
cosx x

2

1

2
� �

�

cos
cosx x

2

1

2
� �

�

tan
cos

sin

sin

cos

x x
x

x
x2

1

1
�

�
�

�

Product-to-Sum Identities

sin cos sin sin

cos sin sin sin

x y x y x y

x y x y x y

� �� � � �� ��� ��

� �� � � �

1

2

1

2
�� ��� ��

� �� � � �� ��� ��

� �� �

sin sin cos cos

cos cos cos

x y x y x y

x y x y

1

2

1

2
�� �� ��� ��cos x y

Sum-to-Product Identities

sin sin sin cos

sin sin cos

x y x y x y

x y x y

� �
��

�
�

�
�
�

��
�
�

�
�
�

� �
��

�
�

2
2 2

2
2

��
�
�

��
�
�

�
�
�

� �
��

�
�

�
�
�

��
�
�

�
�
�

sin

cos cos cos cos

cos

x y

x y x y x y

x

2

2
2 2

�� � �
��

�
�

�
�
�

��
�
�

�
�
�cos sin siny x y x y

2
2 2
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The Laws of Sines and Cosines

The Law of Sines The Law of Cosines

sin sin sinA
a

B
b

C
c

= = a b c bc A

b a c ac B

c a b ab C

2 2 2

2 2 2

2 2 2

2

2

2

� � �

� � �

� � �

cos

cos

cos

Inverse Trigonometric Functions

Arcsine, Arccosine, and Arctangent

Function Domain Range Notation

Inverse Sine �� �1 1, ��
��

�
��

p p
2 2

, arcsin sin sinx x y x y� � � ��1

Inverse Cosine �� �1 1, 0,p� � arccos cos cosx x y x y� � � ��1

Inverse Tangent �� �� �, ��
�
�

�
�
�

p p
2 2

, arctan tan tanx x y x y� � � ��1

Inverse Trigonometric Graphs

Inverse Sine Inverse Cosine Inverse Tangent
y

x
1−1

π
2

− π2

y x= −sin 1

y

x
1−1

π
2

π

y x= −cos 1

y

x
21−1−2

π
2

3−3

− π2

y x= −tan 1

Inverse Cosecant Inverse Secant Inverse Cotangent
y

x
21−1−2

π
2

3−3

− π2

y x= −csc 1

y

x
21−1−2

π
2

3−3

π

y x= −sec 1

y

x
21−1−2

π
2

3−3

− π2

y x= −cot 1

Inverse Trigonometric Identities

csc sin
� �� �

�
�

�
�
�

1 1 1x
x

sec cos
� �� �

�
�

�
�
�

1 1 1x
x

cot tan , cot
� � �� �

�
�

�
�
� �1 1 11

0
2

x
x

 with 
p

B

A
C

a

b

c
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Hyperbolic Functions

Hyperbolic Functions and Their Graphs

Hyperbolic Sine Hyperbolic Cosine Hyperbolic Tangent

sinh x e ex x

�
� �

2

y x= sinh

y ex=
2

y e x

= −
−

2

x

y

2

1

1−1−2 2

−1

−2

cosh x e ex x

�
� �

2

y e x

=
−

2
y ex=

2
x

y

2

1−1−2 2

−1

y x= cosh

−2

tanh
sinh

cosh
x x

x
e e
e e

x x

x x� �
�
�

�

�

y x= tanh

y = 1

y = −1

x

y

2

1−1−2 2

−2

Hyperbolic Cosecant Hyperbolic Secant Hyperbolic Cotangent

csch
sinh

x
x e ex x� �

� �

1 2

y x= csch

x

y

3

321−1−2−3

2

1

−1

−2

−3

sech
cosh

x
x e ex x� �

� �

1 2

x

y

2

21−1−2

−1

−2

y x= sech
y = 1

coth
tanh

x
x

e e
e e

x x

x x� �
�
�

�

�

1

y x= coth

y = 1

y = −1

x

y

3

21−1−2

2

−2

−3

Elementary Hyperbolic Identities

cosh sinh
2 2

1x x� � sinh sinh cosh2 2x x x= cosh cosh sinh2
2 2x x x� �

tanh sech
2 2

1x x� � sinh
cosh2 2 1

2
x x
�

�
sinh sinh cosh cosh sinhx y x y x y�� � � �

coth csch
2 2

1x x� � cosh
cosh2 2 1

2
x x
�

�
cosh cosh cosh sinh sinhx y x y x y�� � � �

A-12
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Complex Numbers
The complex numbers, an extension of the real numbers, consist of all numbers that can 
be expressed in the form a + bi, where a and b are real numbers and i, representing the 
imaginary unit, satisfies the equation i 2 = -1. Complex numbers expand the real numbers 
to a set that is algebraically closed, a concept belonging to the branch of mathematics 
called abstract algebra. Girolamo Cardano (1501–1576) and other Italian Renaissance 
mathematicians were among the first to recognize the benefits of defining what we now 
call complex numbers; by allowing such “imaginary” numbers as i, which is a solution of 
the equation x2 + 1 = 0, mathematicians were able to devise and make sense of formulas 
solving polynomial equations up to degree four. Later mathematicians conjectured that 
every nonconstant polynomial function, even those with complex coefficients, has at least 
one root (a number at which the polynomial has the value of 0), assuming complex roots are 
allowed. Repeated application of this assertion then implies, counting multiplicities of roots, 
that a polynomial of degree n has n roots; stated another way, an nth-degree polynomial 
equation has n solutions (some of which may be repeated solutions). The first reasonably 
complete proof of this conjecture, now known as the Fundamental Theorem of Algebra, was 
provided by Carl Friedrich Gauss (1777–1855) in 1799 in his doctoral dissertation.

Unlike real numbers, often identified with points on a line, complex numbers are typically 
depicted as points in the complex plane, also known as the Argand plane, which is named 
after the French Swiss mathematician Jean-Robert Argand (1768–1822). The complex plane 
has the appearance of the Cartesian plane, with the horizontal axis referred to as the real axis 
and the vertical axis as the imaginary axis. A given complex number a + bi is associated 
with the ordered pair a b,� �  in the plane, where a represents the displacement along the 
real axis and b the displacement along the imaginary axis (see Figure 1 for examples). In 
this context, a is called the real part of a + bi and b the imaginary part. Real numbers are 
thus complex numbers for which the imaginary part is 0 (they can be written in the form 
a + 0 ⋅ i), and pure imaginary numbers are complex numbers of the form 0 + bi; the origin 
of the plane represents the number 0 + 0 ⋅ i and is usually simply written as 0. Two complex 
numbers a + bi and c + di are equal if and only if a = b and c = d (that is, their real parts are 
equal and their imaginary parts are equal).

Sums, differences, and products of complex numbers are easily simplified and written in 
the form a + bi by treating complex numbers as polynomial expressions in the variable 
i, remembering that i 2 = -1. (Keep in mind, though, that i is not, in fact, a variable—this 
treatment is simply a convenience.) Example 1 illustrates the process.

	{ Example 1  Adding, Subtracting, and Multiplying Complex Numbers

Express each of the following complex expressions in the form a + bi.

a.	 4 3 5 7�� � � � �� �i i 	 b.	 � �� � � � �� �2 3 3 3i i

c.	 3 2 2 3�� � � �� �i i 	 d.	 2 3
2

�� �i

Solution

a.	 4 3 5 7 4 5 3 7

1 10

�� � � � �� � � �� � � �� �
� � �

i i i

i

b.	 � �� � � � �� � � � �� � � �� �
�

2 3 3 3 2 3 3 3

1

i i i

Appendix D

	Ǜ A Recurring Theme

Gauss considered the Funda-
mental Theorem of Algebra so 
important that he returned to the 
topic repeatedly, publishing a to-
tal of four different proofs over his 
lifetime—the first in 1799, two in 
1816, and the fourth in 1850.

−1 + 3i

2 + i

1 − i

−3 − 2i

Re

Im

i

2i

3i

−i

−2i

−3i

1 2 3−1 0−2−3

Figure 1
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c.	 3 2 2 3 6 9 4 6

6 9 4 6

1

2

2
1

�� � � �� � � � � � �

� � � �� � �
� �

�

i i i i i

i iReplace with .

22 5� i

d.	 2 3 2 3 2 3

4 6 6 9

4 12 9

2

2

2
1

�� � � �� � �� �
� � � �

� � �

�

�

i i i

i i i

i iReplace with .

�� �5 12i

Division of complex numbers is slightly more complicated, but a quotient can also be 
simplified and written in the form a + bi by making use of the following observation.

a bi a bi a abi abi b i a b�� � �� � � � � � � �2 2 2 2 2

Given a complex number z = a + bi, the complex number z a bi� �  is called its complex 
conjugate. We simplify a quotient of complex numbers by multiplying the numerator and 
denominator by the complex conjugate of the denominator, as illustrated in Example 2.

	{ Example 2  Simplifying Quotients of Complex Numbers

Express each of the following complex expressions in the form a + bi.

a.	 2 3

3

�
�

i
i

	 b.	 4 3
1

�� ��i 	 c.	
1
i

Solution

a.	 2 3

3

2 3 3

3 3

�
�

�
�� � �� �
�� � �� �

i
i

i i
i i

���������
Multiply the numeratoor and

denominator by the conjugate.
 

�
� � �
� � �

6 2 9 3

9 3 3

2i i i
i i i 22

6 11 3

9 1

3 11

10

3

10

11

10

2
1�

� �
�

�
�

� �

�
i

i i

i�Replace with .

b.	 4 3
1

4 3

1 4 3

4 3 4 3

1

�� � �
�

�
�� �

�� � �� �

�i
i

i
i i

Multiply the numerator annd

denominator by the conjugate.

�
�

� � �

�
�

4 3

16 12 12 9

4 3

16

2

i
i i i

i
��

� �
9

4

25

3

25
i

c.	 1 1

1
2i

i
i i

i
i

i i�
�� �
�� �

�
�
�

�
�
� �
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Endowed with the operations of addition and multiplication, the set of complex numbers, 
like the set of real numbers and the set of rational numbers, form what is known as a field, 
another concept from the realm of abstract algebra. The following table summarizes the 
properties possessed by a field; note that each of the three sets of numbers mentioned above 
possesses all the properties. Also note, by way of contrast, that the set of natural numbers, 
the set of integers, and the set of irrational numbers are not fields, as each set fails to possess 
one or more of the field properties.

	± Theorem  Field Properties

In the following properties, a, b, and c represent arbitrary elements of a given field. 
The first five properties apply individually to the two operations of addition and 
multiplication, while the last property combines the two operations.

Name of Property Additive Version Multiplicative Version

Closure a + b is an element of the field ab is an element of the field

Commutative a + b = b + a ab = ba

Associative a b c a b c� �� � � �� � � a bc ab c� � � � �

Identity a + 0 = 0 + a = a a ⋅ 1 = 1 ⋅ a = a

Inverse a a� �� � � 0 a
a
� �
1

1,  assuming a ≠ 0

Distributive a b c ab ac�� � � �

The introduction of the imaginary unit i allows us to now define the principal square root 
a  of any real number a, as follows: Given a positive real number a, a  denotes the 

positive real number whose square is a, and � �a i a .  An application of this definition 
explains the restriction in one of the properties of exponents (specifically, the exponent 1 2).  
Recall that if a and b are both positive, then

ab ab a b a b� � � � �
1 2 1 2 1 2

.

To see why a and b are required to be positive, note that

�� � �� � � �9 4 36 6,

but

� � � � �� � � � �� � � � �9 4 9 4 3 2 6 6
2i i i i i .

Complex numbers can also be expressed in polar form, based on the polar coordinates of 
a given complex number in the plane. We say the magnitude z  of a complex number 
z = a + bi, also known as its modulus, norm, or absolute value, is its distance from 0 in the 
complex plane—that is, the nonnegative real number

z a b� �2 2
.

The argument of z, denoted arg ,z� �  is the radian angle q between the positive real axis 
and the line joining 0 and z. The quantities z  and arg z� �  thus play the same roles, 
respectively, as the polar coordinates r and q of a point in the plane. The argument of the 
complex number 0 is undefined, while the argument of every other complex number is not 
unique (any multiple of 2p added to the argument of a given complex number describes the 
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same number, since 2p corresponds to a complete rotation around the origin). Given these 
definitions, and letting q � � �arg ,z  the polar form of z = a + bi is then

z r i� �� �cos sin ,q q   where  r z=

(see Figure 2 for a depiction of the relationship between a, b, r, z ,  and q).

	{ Example 3  Writing Complex Numbers in Polar Form

Write each of the following complex numbers in polar form.

a.	 1 3+ i 	 b.	 � �1 i

Solution

a.	 The magnitude of 1 3+ i  is 1 3 2
2

2

� � � � ,  and its argument is tan
� �1

3 3p  
(see Figure 3). Hence,

1 3 2
3 3

� � ��
�
�

�
�
�i icos sin .

p p

b.	 The magnitude of � �1 i  is �� � � �1 1 2
2 2

,  and its argument is 3 4p  (note 
that this complex number lies in the second quadrant of the plane, as shown in 
Figure 4). Hence,

� � � ��
�
�

�
�
�1 2

3

4

3

4
i icos sin .

p p

Euler’s formula e iiq q q� �cos sin ,  derived in Section 10.9, allows us to express the polar 
form of a complex number as a complex exponential:

z re r z zi� � � � �q q, where and arg .

With this observation, the following formulas regarding products and quotients of complex 
numbers are easily proved (they can also be proved by using the trigonometric sum and 
difference identities).

	± Theorem  Products and Quotients of Complex Numbers

Given the complex numbers

z r i
1 1 1 1
� �� �cos sinq q   and  z r i

2 2 2 2
� �� �cos sin ,q q

the following formulas hold.

Product Formula z z r r i
1 2 1 2 1 2 1 2

� �� � � �� ��� ��cos sinq q q q

Quotient Formula z
z

r
r

i1

2

1

2

1 2 1 2
� �� � � �� ��� ��cos sin ,q q q q  assuming z

2
0≠

r z a b= = +2 2

b z= sinθ

a z= cosθ

z a bi= +

tanθ =
b
aθ Re

Im

bi

a0

Figure 2

π
3

2

Re

Im

10

3i

Figure 3

3

4

π
2

Re

Im

−1 0

i

Figure 4
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	Ø Proof

Writing each complex number as a complex exponential,

z z r e r e r r e r r ii i i
1 2 1 2 1 2 1 2 1 2 1

1 2 1 2� � �� � � � �� � � ��� �q q q q q q qcos sin qq
2� ��� ��

and

z
z

r e
r e

r
r
e r

r
i

i

i
i1

2

1

2

1

2

1

2

1 2 2 2

1

2

1 2� � � �� � � �� ��� �
q

q
q q q q q qcos sin��� �� .

The following statement regarding positive integer powers of complex numbers can be 
similarly proved.

	± Theorem  De Moivre’s Theorem

Given a complex number z r i� �� �cos sinq q  and positive integer n,

z r n i nn n� �� �cos sin .q q

	Ø Proof

Again writing z as a complex exponential,

z re r e r n i nn i n n in n� � � � � �� �q q q qcos sin .

De Moivre’s Theorem can be used to determine roots of complex numbers.  
The first step is to note that if w rei= q  is a nonzero complex number, and if n is a positive 
integer, then w has n nth roots. This follows from the Fundamental Theorem of Algebra, 
which tells us that the equation zn = w has n solutions (here, z represents a complex variable). 
One nth root is easily determined: if we let

z r en i n
0

1� � �q
,

then

z r e re wn n i n n
i

0

1� ��
�
� � �� �q q

.

But as we know, replacing q with q + 2kp results in an equivalent complex number for any 
integer k, leading to the following formula for the nth roots of w.

	± Theorem  Roots of a Complex Number

Let w r i� �� �cos sinq q  and let n be a positive integer. The nth roots of w are given by

z r e k nk
n
i k

n� � �
��

�
�

�
�
�

1

2

0 1 1

θ π

, , , , .

Alternatively,

z r k
n

i k
n

k nk
n�

��
�
�

�
�
� �

��
�
�

�
�
�

�

�
�

�

�
� � �1 2 2

0 1 1cos sin , , , .
θ π θ π

, 
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The n nth roots of a given complex number all have the same magnitude and are equally 
distributed around a circle in the complex plane with radius equal to that common magnitude.

	{ Example 4  Finding and Graphing Roots of a Complex Number

Determine the specified roots of the given complex numbers, and graph the roots and 
the original complex numbers in the plane.

a.	 5th roots of 1	 b.	 4th roots of - -1 3i

Solution

a.	 The easiest way to determine the 5th roots of 1 is to write 1 as a complex exponential 
and then apply the above formula with n = 5:

	 1
0� �ei ,

	 so the 5th roots of 1 are

	
1

2 5 4 5 6 5 8 5

, , , , .e e e ei i i ip p p p� � � � � � � �� �
	 Since the complex number 1 (shown as a blue point in Figure 5) has a magnitude of 

1, all of the five 5th roots (shown as red points in the figure) lie on a circle of radius 
1. Note that 1 is, itself, one of the 5th roots of 1.

b.	 The first step is to again express the complex number as a complex exponential. 
Note that

	
� � � �� � � �� � � �1 3 1 3 4 2

2
2

i

	 and

	
tan ,θ θ

π
�
�
�

� �
3

1

4

3

	 so

	 � � � � �
1 3 2

4 3i ei p
.

	 Hence, the 4th roots of - -1 3i  are

	
2 2 2 2

1 4 4 4 3 2

0 1 2 3

1 4 3 1 4 5 6 1 4e e e ei k

k

i i� � � ���� ��

�

� � � �� � �p p p p

, , ,

, ,
ii ie4 3 1 4 11 6

2
p p� � � �� �, .

	 Figure 6 shows the original point - -1 3i  in blue and its four 4th roots in red.

Re

Im

10

Figure 5

Re

Im

0−1

− 3i

Figure 6
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Proofs of Selected Theorems
In this appendix, we provide proofs (or in one case just a statement) of theorems used in the 
main body of the text. While some of the proofs here are more technical in nature than those 
presented elsewhere, they are worth studying in order to (1) gain additional insight into the 
rigorous nature of mathematical thinking and (2) develop a sense of the deeper mathematics 
to come in later courses.

	± Theorem  Basic Limit Laws

Let  f  and g be two functions such that both lim
x c

f x
�

� �  and lim
x c
g x

�
� �  exist, and let k 

be a fixed real number. Then the following laws hold.

Sum Law lim lim lim
x c x c x c

f x g x f x g x
� � �

� � � � ��� �� � � � � � �

Difference Law lim lim lim
x c x c x c

f x g x f x g x
� � �

� � � � ��� �� � � � � � �

Constant Multiple Law lim lim
x c x c

kf x k f x
� �

� ��� �� � � �

Product Law lim lim lim
x c x c x c

f x g x f x g x
� � �

� � � ��� �� � � � � � �

Quotient Law lim

lim

lim
, lim

x c

x c

x c
x c

f x
g x

f x

g x
g x

�

�

�
�

� �
� �

�
� �
� � � � �provided 0

	Ø Proof

We already proved the Sum Law in Section 2.4. We proceed to prove the Product Law 
and Quotient Law, from which the remaining laws will follow quickly.

As in the proof of the Sum Law, let L f x
x c

� � �
�

lim  and M g x
x c

� � �
�

lim ,  and assume 

e > 0 is given. Our goal is to show there exists d > 0 such that f x g x LM� � � � � � e  
for all 0 � � �x c d.  One way to determine d is to employ a strategy of adding and 
subtracting the same quantity, in this case f x M� � .

f x g x LM f x g x f x M f x M LM

f x g x M M f x L

� � � � � � � � � � � � � � � � �

� � � � � ��� �� � � � ���� ��

� � � � � � � � � �

Triangle Inequality

f x g x M M f x L

Since L f x
x c

� � �
�

lim ,  we know there exists d1 > 0 for which
0 1

1
� � � � � � � �x c f x Ld ,

so  f x f x L L f x L L L� � � � � � � � � � � � � �1 .

Similarly, there exists d2 > 0 for which 

0

2 1
2

� � � � � � � �
�� �

x c f x L
M

δ
ε

.

And finally, since M g x
x c

� � �
�

lim ,  there exists d3 > 0 for which

0

2 1
3

� � � � � � � �
�� �

x c g x M
L

δ
ε

.

Appendix E

Section 2.4
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So, if we let d d d d� � �min , , ,
1 2 3

 0 � � �x c d  will guarantee each of the above 
three outcomes, meaning

f x g x LM f x g x M M f x L

L
L

M
M

� � � � � � � � � � � � � � �

� �� �
�� �

� �
�� �

� �

1

2 1 2 1

2

e e

e e
22
� e,

thereby proving the Product Law.

To prove the Quotient Law, we will see that it suffices to prove

lim ,
x c g x M� � �

�
1 1

under the assumption that M ≠ 0. In doing so, we will use the fact that a b a b� � �  
for arbitrary real numbers a and b. This follows from the observation that

a a b b a b b� � � � � � , Triangle Inequality

so a b a b� � � .  Similarly, interchanging a and b in the same argument shows that 
b a b a a b� � � � � ,  and the two facts together prove that a b a b� � � .

Now, given e > 0, we need to show there exists d > 0 for which 0 � � �x c d  implies

1 1

g x M� �
� � e.

Since 

1 1 1 1

g x M
M g x
g x M g x M

g x M
� �

� �
� � �
� �

�
� �

� � � � � ,

we want to choose d in such a manner that g x M� � �  is sufficiently small and so that 
g x� �  is far enough away from 0 to make

1 1
g x M� �

�

also sufficiently small. The fact that M g x
x c

� � �
�

lim  tells us there is a d1 > 0 for which 

0
1

� � �x c d  implies g x M M� � � � 2,  meaning

0
2

1
� � � � � � � � � � � � � � �x c g x M g x M

M
a b a bd , Using 

and so

� � � � � �
M

g x M
M

2 2
.

 

Adding M  throughout results in the equivalent double inequality

M
g x

M
2

3

2
� � � �
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whenever 0
1

� � �x c d .  For our present purposes, we actually only care about the 
fact that 

g x
M

g x M
� � �

� �
�

2

1 2
, .which means that

 

There is also a d2 > 0 such that

0
2

2

2

� � � � � � � �x c g x M
M

δ
ε

,

so if we let d d d� � �min , ,
1 2

 we have

0
1 1 1 1 2 1

2

2

� � � �
� �

� �
� �

� � � � � � � � �x c
g x M g x M

g x M
M M

M
δ

ε
ε,

 

thus proving

lim .
x c g x M� � �

�
1 1

We can now apply the Product Law, already proved, to obtain the Quotient Law.

lim lim

lim lim

x c x c

x c x c

f x
g x

f x
g x

f x

� �

� �

� �
� �

� � � � � �
�

�
�
�

�

�
�
�

� � � �

1

1

gg x

L
M

f x

g x
x c

x c

� �

� � �
� �
� �

�

�

Product Law

1
lim

lim

The Constant Multiple Law is a consequence of the Product Law, using g x k� � �  as one 
of the two functions, and the Difference Law follows from applying first the Sum Law and 
then the Constant Multiple Law (with k = -1).

	± Theorem  Positive Integer Power Law

Let  f  be a function for which lim
x c

f x
�

� �  exists, and let m be a fixed positive integer. 
Then

lim lim .
x c

m

x c

m
f x f x

� �
� ��� �� � � ��

�
�
�

	Ø Proof

The statement is trivially true for m = 1, so we prove the theorem for m ≥ 2. We use 
mathematical induction to do so.

Basis Step:  By the Product Law, we have 

lim lim lim .
x c x c x c

f x f x f x f x
� � �

� ��� �� � � � � ��� �� � � ��
�

�
�

2
2

Inductive Step:  Assume lim lim
x c

k

x c

k
f x f x

� �
� ��� �� � � ��

�
�
�  for some k ≥ 2. Then again 

applying the Product Law, we complete the proof as follows.
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lim lim

lim li

x c

k

x c

k

x c

k

f x f x f x

f x

�

�

�

�

� ��� �� � � ��� �� � �� �
� � ��� �� �

1

mm

lim lim

x c

x c

k

x c

f x

f x f x

�

� �

� �

� � ��
�

�
� � � �

Product Law

Induction hyypothesis

� � ��
�

�
��

�

lim
x c

k
f x

1

	± Theorem  The Squeeze Theorem

If g x f x h x� � � � � � � �  for all x in some open interval containing c, except possibly 
at c itself, and if lim lim ,

x c x c
g x h x L

� �
� � � � � �  then lim

x c
f x L

�
� � �  as well.

The statement also holds for limits at infinity, that is, for c = -∞ or c = ∞.

	Ø Proof

Since g x f x h x� � � � � � � �  for all x in some open interval containing c, there exists 
d1 > 0 such that 0

1
� � � � � � � � � � � �x c g x f x h xd .  And by the limit definition, 

given e > 0 there exist d2 > 0 and d3 > 0 such that

0
2

� � � � � � � � � � � � � � �x c g x L L g x Lδ ε ε ε

and

0
3

� � � � � � � � � � � � � � �x c h x L L h x Lδ ε ε ε.

By letting d d d d� � �min , , ,
1 2 3

 all three conclusions are true for x within d of c. That 
is,

0 � � � � � � � � � � � � � � � � � � � � �x c L g x f x h x L f x Lδ ε ε ε.

	± Theorem  Upper Bound Theorem

If f x g x� � � � �  for all x in some open interval containing c, except possibly at c 
itself, and if the limits of  f  and g both exist at c, then 

lim lim .
x c x c

f x g x
� �

� � � � �

	Ø Proof

Let L f x
x c

� � �
�

lim  and M g x
x c

� � �
�

lim .  Note that, by the Difference Law, the limit of 

g x f x� � � � �  at c exists, and

lim lim lim .
x c x c x c

g x f x g x f x M L
� � �

� � � � ��� �� � � � � � � � �

Suppose, in contradiction to the claim, that L > M. Then L - M > 0, and if we let 
e = L - M, there exists d > 0 such that

Section 2.4
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0 � � � � � � � � � � �� � �

� � � � � � � � � � �

� � � � � � � �

x c g x f x M L

g x f x M L

M L g x f x

δ ε

ε ε

�� � � �M L L M .

In particular, g x f x M L L M� � � � � � � � � ,  so g x f x� � � � � � 0  for all x such that 
0 � � �x c d,  contradicting the fact that f x g x� � � � �  for all x in some open interval 
containing c. Thus, it must be the case that L ≤ M; that is, lim lim .

x c x c
f x g x

� �
� � � � �

	± Theorem  “Limits Pass through a Continuous Function”

Suppose lim
x c
g x a

�
� � �  and  f  is continuous at the point a. Then

lim lim .
x c x c

f g x f g x f a
� �

� �� � � � �� � � � �

In words, we say the limit operation passes inside the continuous function  f .

	Ø Proof

Assume e > 0 is given. Since  f  is continuous at a, there exists d1 > 0 for which

x a f x f a� � � � � � � � �δ ε
1

.

And since lim ,
x c
g x a

�
� � �  there exists d > 0 such that

0
1

� � � � � � � �x c g x ad d .

Putting these facts together, we see that

0
1

� � � � � � � � � � �� � � � � �x c g x a f g x f aδ δ ε,

and hence lim .
x c

f g x f a
�

� �� � � � �

	± Theorem  “The Inverse of a Continuous Function Is Continuous”

If  f  is one-to-one and continuous on the interval a b, ,� �  then f -1  is also a continuous 
function.

	Ø Proof

We first show that  f  is strictly monotonic on a b, ,� �  and we do so by applying the 
Intermediate Value Property to a number of cases, all of which are similar. If  f  is 
neither strictly increasing nor strictly decreasing, then there must be points x1 < x2 < x3 
in a b,� � for which f x2� �  does not lie between f x1� �  and f x

3� �.  We will show 
that cannot happen, using a proof by contradiction.

To that end, suppose x1, x2, and x3 are three points in a b,� �  for which x1 < x2 < x3 
and for which f x2� �  does not lie between f x1� �  and f x

3� �.  Since  f  is one-to-
one, either f x f x

1 3� � � � �  or f x f x
1 3� � � � �;  we will assume that f x f x

1 3� � � � �  
and leave consideration of the other case to the reader. The assumption that f x2� �  
is not between f x1� �  and f x3� �  again leads to two cases, one of which is that 
f x f x f x

1 3 2� � � � � � � �.  Let y be a value such that f x y f x
3 2� � � � � �.  

Section 2.5
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Then by the continuity of  f  and the Intermediate Value Property (see Section 2.5), 
there is a point p such that x2 < p < x3 and f p y� � �  (in words, there is a point 
between x2 and x3 at which  f  takes on the value y, since y lies between the values of  f  
at x2 and x3). But since f x f x

1 3� � � � � ,  y also satisfies f x y f x
1 2� � � � � � ,  so there 

is a point q such that x1 < q < x2 and f q y� � � .  But then p ≠ q (since x2 lies strictly 
between them) and f p f q� � � � � ,  contradicting the fact that  f  is one-to-one. By the 
same reasoning, the possibility that f x f x f x

2 1 3� � � � � � � �  is also ruled out, as are 
the two cases for which f x f x

1 3� � � � �.  Thus,  f  must be either strictly increasing or 
strictly decreasing.

To now show that f -1  is continuous we will assume  f  is strictly increasing—the 
argument that f -1  is continuous when  f  is strictly decreasing is similar in nature. 
Let y0 be a point in the image of a b,� �  under  f , and let e > 0 be given. Since y0 is 
in the image set, there is a (unique) point x a b

0
�� �,  for which f x y

0 0� � � .  Define

e e
1 0 0
� � �� �min , , .x a b x

Then, since we are assuming  f  is increasing, the image of the interval x x
0 1 0 1
� �� �e e,  

is the interval f x f x
0 1 0 1
�� � �� �� �e e, ,  and y f x f x

0 0 1 0 1
� �� � �� �� �e e, .  Choose 

d > 0 small enough so that

y y f x f x
0 0 0 1 0 1
� �� � � �� � �� �� �δ δ ε ε, , . 

Then for any y such that y y� �
0

d,  y f x f x� �� � �� �� �0 1 0 1
e e,  and hence 

f y x x� � �� � �� �1

0 1 0 1
e e, .  That is,

y y f y f y� � � � � � � � � �� �
0

1 1

0 1
δ ε ε

and hence f -1  is continuous at y0. Since y0 was arbitrary, we have shown that f -1  is 
continuous on the image of a b,� �  under  f .

	± Theorem  Bolzano-Weierstrass Theorem (Statement Only)

Every bounded sequence of real numbers has a convergent subsequence.

The Bolzano-Weierstrass theorem has many uses, one of which is to help prove the Extreme 
Value Theorem of Chapter 4. Specifically, its use assures the existence of points in a closed 
and bounded interval at which a continuous function attains its extreme values. 

	± Theorem  Taylor’s Theorem

If  f  and its derivatives up through f n� �  are all continuous on the closed interval a b,� �  
and if f n�� �1  exists on the open interval a b, ,� �  then there is a number c a b�� �,  such 
that

f b f a f a b a
f a

b a
f a
n

b a
fn

n
n

� � � � � � �� � �� � �
��� �

�� � � �
� �

�� � �
� � �

2

2

1

! !


�� �
�� �

�� �
�� �

c
n

b a n

1

1

!
.
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	Ø Proof

The preceding statement is actually just one variant of Taylor’s Theorem, and each 
variant has, in turn, several slightly different methods of proof. We will use Cauchy’s 
Mean Value Theorem (Section 4.4) to prove this variant.

We begin by defining

F x f x f x b x
f x

b x
f x
n

b x
n

n� � � � � � �� � �� � �
��� �

�� � � �
� �

�� �
� �

2

2

! !


and

G x b x n� � � �� � �1

.

Given these definitions, we have the following.

F b f b

F a f a f a b a
f a

b a
f a
n

b
n

� � � � �

� � � � � � �� � �� � �
��� �

�� � � �
� �

�
� �

2

2

! !
 aa

G b

G a b a

n

n

� �

� � �

� � � �� � �

0

1

Note also that

�� � � �� � � ��� � �� � � �� ��� �� �
���� �

�� � � ��� � �F x f x f x b x f x
f x

b x f x b
2

2

!
xx

f x
n

b x
f x
n

b x
n

n
n

n

� �
�

�
�
�

�

�
�
�

� �
� �

�� � �
� �
�� �

�� �
�

�
�
�

�� � � �
�



1

1

1! !

��

�
�
�

�
� �

�� �
�� �f x
n

b x
n

n
1

!

and

�� � � � �� � �� �G x n b x n
1 .

The functions F and G satisfy the hypotheses of Cauchy’s Mean Value Theorem, and 
therefore there is a point c a b�� �,  for which

�� �
�� �

�
� � � � �
� � � � �

F c
G c

F b F a
G b G a

,

which we will rewrite in the form

F b F a
F c
G c

G b G a� � � � � �
�� �
�� � � � � � ��� �� .

Making use of the above notes, we have the following result.

f b F b

F a

f c
n

b c

n b c
b a

n
n

n

n

� � � � �

� � � �
� �

�� �
� �� � �� �

� �� ��
�

�
�

�

�� �

�

1

1

1

!

ff a f a b a
f a

b a
f a
n

b a
n

n

F a

� � � �� � �� � �
��� �

�� � � �
� �

�� �
� �

� �
2

2

! !
�

� �������������� �������������
�

� �
�� �

�� �
�� �

�f c
n

b a
n

n
1

1

1 !
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	± Theorem  Clairaut’s Theorem

If f x y,� �  and the partial derivatives  f x ,  f y ,  f xy , and  f yx are all defined on an open 
region containing the point a b, ,� �  and if  f xy and  f yx are continuous at a b, ,� �  then 
f a b f a bxy yx, , .� � � � �

	Ø Proof

We begin by choosing Dx ≠ 0 and Dy ≠ 0 small enough so that the rectangle with 
vertices a b, ,� �  a x b� �� �, ,  a x b y� � � �� �, ,  and a b y, � �� �  is entirely contained 
within the open region of the hypotheses (see Figure 1), and we define

� � � � � �� � � � �� ��� �� � � �� � � � ��� ��f a x b y f a x b f a b y f a b, , , , .

If we further define g x f x b y f x b� � � � �� � � � �, , ,  then

 � � � �� � � � �g a x g a 
and by the Mean Value Theorem there is a point p between a and a + Dx for which

� � �� � �� �x g p .

Note that �� � � � �� � � � �g x f x b y f x bx x, , ,  and by a second application of the Mean 
Value Theorem there is a point q between b and b + Dy for which 

�� � � �� � � �g p y f p qxy , .

Substituting this into the expression above, we have

� � �� � �� � � �x y f p qxy , .

However, if we define h y f a x y f a y� � � � �� � � � �, , ,  then D can also be written as
� � � �� � � � �h b y h b ,

and a third application of the Mean Value Theorem tells us there is a point s between 
b and b + Dy for which

� � �� � �� �y h s .

Since �� � � � �� � � � �h y f a x y f a yy y, , ,  one final application of the Mean Value 
Theorem implies there is a point r between a and a + Dx for which 

�� � � �� � � �h s x f r syx , ,

and hence 
� � �� � �� � � �y x f r syx , .

Equating the two expressions for D, we have f p q f r sxy yx, , ,� � � � �  where p q,� �  
and r s,� �  are both inside the rectangle with dimensions Dx and Dy. The continuity of 
both  f xy and  f yx at a b,� �  means that

f p q f a b f r s f a bxy xy yx yx, , , ,� � � � � � � � � � � �e e
1 2

and 

where each of e1 and e2 approach 0 as � �� � � � �x y, , ,0 0  and so it must be the case that

f a b f a bxy yx, , .� � � � �
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	± Theorem  The Increment Theorem of Differentiability

If the partial derivatives of f x y,� �  exist throughout an open region R containing the 
point a b, ,� �  and if  f x and  f y are both continuous at a b, ,� �  then  f  is differentiable at 
a b, .� �  That is, the increment ∆f  at a b,� �  can be written as

� � � �� � � �� � � � �f f a b x f a b y x yx y, , e e
1 2

where both e1 and e2  approach 0 as � �� � � � �x y, , .0 0  Hence, if the partial derivatives 
are continuous throughout R,  f  is differentiable on all of R.

Analogous statements apply to functions of three or more variables.

	Ø Proof

The increment Df  at a b,� �  can be written in the form

� � � � � �� � � � �f f a x b y f a b, , ,

and since we are interested in the form of the increment as Dx and Dy approach 0, we 
can assume they are already sufficiently small so that the line segment from a b,� �  to 
a x b� �� �,  and the line segment from a x b� �� �,  to a x b y� � � �� �,  both lie entirely 

within the open region R (see Figure 2). We add and subtract f a x b� �� �,  so that

� � � � � �� � � � �� � � � �� � � � �f f a x b y f a x b f a x b f a b, , , , ,

and we define g y f a x y� � � � �� �,  and h x f x b� � � � �, .  By the Mean Value 
Theorem, there exists a point p between b and b + Dy and a point q between a and 
a + Dx for which

g b y g b y g p� �� � � � � � �� � �� �   and  h a x h a x h q� �� � � � � � �� � �� �.

Since �� � � � �� �g y f a x yy ,  and �� � � � �h x f x bx , ,  we now have 

� � � � � �� � � � �� � � � �� � � � �
� � �� � � � � �
f f a x b y f a x b f a x b f a b

g b y g b h a

, , , ,

�� �� � � � �
� �� � �� � � �� � �� �
� �� � � �� � � �� � � �

x h a

y g p x h q

y f a x p x f q by x, , ..

The fact that  f x and  f y are both continuous at a b,� �  means that if we define

e
1
� � � � � �f q b f a bx x, ,   and  e

2
� � �� � � � �f a x p f a by y, , ,

then both e1 and e2 have limits of 0 as � �� � � � �x y, ,0 0  (note that q a→  as � �x 0  
and p b→  as � �y 0).  Hence,

� � �� � � �� � � �� � � �
� �� � � � ��� �� � �� �

f y f a x p x f q b

y f a b x f a b

y x

y x

, ,

, ,e
2 �� � ��� ��

� � �� � � �� � � � �

e

e e

1

1 2
f a b x f a b y x yx y, , .
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