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Appendix A Fundamentals of Mathematica

Mathematica is a powerful and flexible software package with a wide variety of uses. To begin with, Mathematica (along with
similar products such as Maple, MATLAB, and Derive) can be viewed as a sort of supercalculator. It also understands the rules
of algebra, has a huge number of built-in functions ranging from the trivial to the exotic, and is very good at generating high-
quality graphs in one, two, and three dimensions. Beyond that, a package such as Mathematica is also a programming environment;
it is this aspect of Mathematica that allows the user to extend its capabilities to suit specialized needs.

The optional use of Mathematica and similar technology in [ s ans- watm motmemstes 1 = O =
this text requires only a basic familiarity; this appendix will | ™ ¢ e foms o e foon frenss wimses Bep

serve as a quick guide to the use of Mathematica. It should also 8 v_. | e ot U 1 2
be noted that a complete guide to Mathematica can be found Wolfrum Accouat Seftnge..

within the program itself. Once it is installed and running on :NMM

your computer, clicking on the “Help” button located in the top Demeonirations..

toolbar (see Figure 1) gives you access to an electronic version o

of a very large Mathematica user’s manual. After clicking b el

on “Help” a drop-down menu appears, and after clicking on I Achaosk

“Wolfram Documentation” the full selection of “Help” categories il

appears. A good place to begin is with “Fast Introductions” in e

the Resources section of the screen. Selecting Fast Introductions

will allow you to then choose “For Programmers” or “For Math Figure 1 Getting On-Screen Help

Students” (either choice will open up a web page, so you must

be connected to the internet to proceed). The “For Math Students” option contains a comprehensive guide and many useful
examples of Mathematica commands, while the “For Programmers” option is appropriate for those who want to delve further
into Mathematica’s capabilities.

At first, you will probably be making use of built-in Mathematica commands such as Plot, Fit, and Solve (as opposed
to using your own user-defined commands). It is important to realize that Mathematica is case sensitive and that all built-in
commands begin with a capital letter. Once a command has been typed in, you’ll need to tell Mathematica to execute it. This
can be done in one of two ways—either by pressing | Shift | and |[Enter| together (known as +(Enter)) or, if you are using
an extended keyboard, by using the |Enter|that appears in the numeric keypad area. Pressing [Enter| alone will simply move the
cursor to the next line and allow you to continue typing but will not execute any commands.

Each time you press + , Mathematica will execute all the commands contained in a single cell. Different
Mathematica cells are demarcated by brackets along the right-hand edge of the work area, and you can always start a new cell
by positioning the mouse cursor over a blank part of the area (you will notice that the cursor symbol becomes horizontal rather
than vertical) and clicking the left mouse button once.

The remainder of this appendix contains examples of a few of the basic Mathematica commands used in this text, arranged roughly
in the order in which they appear. For instant on-screen help on any command, type the command into Mathematica and then press
F1. Doing so will bring up the relevant help pages and, more often than not, provide examples of how the command is used.

Basic Mathematica Commands

Defining Functions o= E[x_] i=x%2+5

A few rules of syntax must be observed in order to define your own functions in n2= glx_,y 1 :=3x-7y
Mathematica. The first is that each variable serving as a placeholder in the definition
must be followed by the underscore symbol “  when it appears on the left side of
the definition and without the underscore when it appears on the right. The second outg= 9
rule is that “:=” (a colon followed by an equal sign) is used in the definition, as
opposed to “=" (see the on-screen Mathematica help for detailed explanations of
these rules). Figure 2 illustrates the definition of the two functions f (x) =x"+5 outi4l= 1
and g(x,y)=3x—7y, followed by an evaluation of each.

nEl= £[-2]

n@4l= g[5, 2]

Figure 2 Defining Functions
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Plot

The basic usage of the Plot command is
Plot[f,{x, x,,, x,,.}]1, where f is an
expression in x representing a function to be
plotted and x,, and x,, define the endpoints
of the interval on the x-axis over which f is
to be graphed. However, the Plot command
also recognizes many options that modify the outs)=
details of the resulting picture; these options
are best explored via the on-screen help. L
Figure 3 illustrates the use of Plot in graphing
the function f(x)=x’—-x*-3x+5 over the
interval [-3,4].

n5= Plot[®x*3-x22-3x+5, {x, -3, 4}]

Piecewise Figure 3 Basic Use of the Plot Command

The Piecewise command allows us to easily create and use functions in Mathematica that correspond to the piecewise-defined
functions referred to in this and many other math texts. See Section 1.2 for an example of the use of the Piecewise command.

Manipulate

The Manipulate command is a powerful tool that is useful in making dynamic models in Mathematica. Such models are
especially useful in exploring the effect of changing the value(s) of parameter(s); see Section 1.5 for an example of such usage.

Limit
The built-in command Limi t is used to direct Mathematica to try to determine the limit of a function at a specified point, with
the option of asking for one-sided limits from either direction. See Section 2.2 and Figure 4 for examples of the command’s use.

10
n(12}= Limit[(2x-1) / (x-1), x> 1, Direction » 1] gt :
Limit[(2x-1) / (x-1), x> 1, Direction » -1] 6F |
Limit[(2x-1) / (x-1), x » Infinity] al |
Out[12]= —co 2 [ ﬂ‘ ,,,,,,,,,,,
\ |
Out[13]= oo E— f : : = : :
-4 -2 12 4 6 8 10
out[14]= 2 :
-4
. . . 2x —1
Figure 4a Use of the Limit Command Figure 4b y= "
X_

Differentiation (D Command) i £[x ] i (XA 2-3x+1) / (x+5)

The basic usage of the built-in differentiation command D isD[ f, x],
where f is a function of the variable x. Figure 5 illustrates such use in
finding the derivative of a given rational function; note the optional 3+2x 1-3x4+x2
use of the Together command (discussed later in this appendix) to outtel= o 5+ 32
express the derivative as a single fraction.

nf1el= D[£[x], x]

If f is a function of more than one variable, the D command can be nier= Together [D[£([x], x]]

used to find partial derivatives. ~16+10 x + x?
Out[19r —m——————

(5+x)2

Figure 5 Differentiation
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Curve Fitting (Fit Command)

The Mathematica command Fit can be used to construct a function of specified form (such as linear, quadratic, exponential,
etc.) to a given set of data (i.e., ordered pairs) using the least-squares method. Figure 6 illustrates the use of Fit to construct both
a linear and a quadratic function that best fits the given set of four data points. Note also the use of the ListPlot, Plot, and
Show commands to create graphs of the data and the two best-fitting functions. Two options are shown in the ListPlot usage,
one of which (PlotStyle) specifies the color and size of the points to be plotted, and the other of which (AxesOrigin)
positions the axes in a certain manner. (For an exponential fit, try out the command Fit[data, {1, Exp[x]}, x].)

ne= data = {{1, 2}, {2, 2}, {3, 3}, {4, 5}}
ourel= {{1, 2}, {2, 2}, {3, 3}, {4, 5}}

n7= gl = ListPlot[data, PlotStyle » {Red, PointSize[Large]}, AxesOrigin -» {0, 0}]

5p °
4+
3r [ J
out[7]=
2+ [ ] [ ]
1 |-
. . . .
1 2 3 4

ner= linearfit = Fit[data, {1, x}, x]
quadraticfit = Fit[data, {1, x, x*2}, x]

ouig= 0.5 +1. x
oufg= 3. -1.5x+0.5x?

nfo= g2 = Plot[{linearfit, quadraticfit}, {x, -1, 5}1;
Show[g2, gl]

Sk

out[11]= 4

Figure 6 Linear and Quadratic Curve Fitting

Solve

The Solve command is very powerful, and can be used in several different ways. Its basic usage is Solve [expr, vars], where
expr represents one or more equations and vars represents one or more variables. If more than one equation is to be solved, the
collection of equations must be enclosed in a set of braces, separated by commas. Similarly, if more than one variable is to be
solved for, the variables must be enclosed in a set of braces. Figure 7 shows the use of Solve to first solve one equation for one
variable, and then to solve a collection of three equations for all three variables. Note how Mathematica expresses the solution
in each case.
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n[151= Solve[3x-x*y =9y, y]

owsr {[v= 7]

9+x

nfe}= Solve[{3x+2y-42=8,4x-5z2=-3, Ty+2z=12}, {x,y, 2}]

50 53 191

outftel= {{x%——, v —, z %7_}}
3 15 15

Figure 7 Two Uses of the Solve Command

@_

It is important to note that equations in Mathematica are expressed with two symbols, as seen in Figure 7. The use of just
one “="1is reserved for assigning a permanent value to something. For instance, the expression x=3 assigns the value of 3 to the
symbol x, while the expression x==3 represents the equation x = 3 in Mathematica.

NSolve

The NSolve command is used in a manner similar to Solwve, but typically in situations where an exact solution is either not
desired or not feasible. See Section 2.5 for an example of the use of the command in finding a numerical approximation of a solution.

FindRoot

The FindRoot command uses numerical methods (such as Newton’s method, Section 4.5) to find approximate roots of
functions, and is especially useful when neither Solve nor NSolve is able to provide a satisfactory result. Its basic usage is
FindRoot[f, {x, x,}]1 when the goal is to find a root of the function f near a given point x,, but it can also be used to find
a numerical solution of the equation /hs = rhs near x, if used in the form FindRoot [/hs ==rhs, {x, x,}] (note the “double
equal sign” used by Mathematica to denote an equation).

FindMaximum and FindMinimum

The usage of the commands FindMaximum and FindMinimum is similar to that of FindRoot, and both also rely on
numerical methods to obtain results. To approximate the location and value of a local maximum of the function f near a given
point x,, the syntax is FindMaximum[ /', {x, x,}]; the use of FindMinimum is identical. Figure 8 illustrates the use of
FindMinimum to identify the radius » that minimizes the surface area of the cylinder of Example 3 in Section 4.6.

n20}= FindMinimum[2 * P1i *r*2 + 1000/ r, {r, 5}]

out20= {348.734, {r>4.30127}}

Figure 8 Use of FindMinimum

Integrate

The Integrate command can be used for both indefinite and definite integration, with the goal determined by the options used
with the command. Figure 9 illustrates how Mathematica provides both the indefinite integral of the rational function 1/ (x2 + 1)
and the definite integral of the same function over the interval [—1 5,1 .5]. (Note that Mathematica does not provide an arbitrary
constant when evaluating indefinite integrals.)

n21}= Integrate[l/ (x*2+1), x]

ou21]= ArcTan [x]

n22)= Integrate[l/ (x*2+1), {x, -1.5, 1.5}]
out22= 1.96559

Figure 9 Integration
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Other Useful Commands

Simplify

The Simplify command is used to simplify mathematical expressions according to the usual rules of algebra. The basic syntax
is Simplify [expr], where expr is the expression to be simplified. Note the examples shown in Figure 10.

n23)= Simplify[x* (4x-2x*xy) / (6x"2)]
2-y
out[23) ———

3

4= Simplify[(a*2-b*2) / (a-b)]

out24]= a + b

Figure 10 Use of Simplify

Expand

This command is used to multiply out factors in an expression. The syntax for the command is Expand [expr] . Figure 11 shows
the use of the command in multiplying out the expression (x - y)5 .

n25)= Expand[ (x - y) ~5]

ousl= x° -5 x* y+10x°y?-10x%2yP+5xyt-y®

Figure 11 Use of Expand

Factor

The Factor command is the reverse of the Expand command when applied to polynomials. Its basic usage is Factor [poly],
where poly is a polynomial expression to be factored.

Together

The Together command is used primarily to express a sum (or difference) of two or more rational expressions as one with
a common denominator, automatically canceling any common factors that may appear. The basic syntax for the command is
Together [expr].
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Appendix B Properties of Exponents and Logarithms,
Graphs of Exponential and Logarithmic Functions

For ease of reference, the basic algebraic properties of exponents and logarithms and the general forms of exponential and
logarithmic graphs appear below. Interestingly, the Scottish mathematician John Napier (1550-1617) introduced logarithms as
an aid to computation, and their use led to the development of various types of slide rules and logarithm tables. It was only later
that mathematicians made the connection between logarithmic and exponential functions, namely that they are inverses of each
other (more precisely, an exponential function of a given base is the inverse function of the logarithmic function with the same
base, and vice versa). This fact appears explicitly as the first property of logarithms below, with the other properties reflecting,
directly or indirectly, the same fact.

Properties of Exponents Graphs of Exponential and

Given real numbers x and y and positive real numbers a and Logarithmic Functions
b, the following properties hold.

1. a'a’ =a™" s
2. i — axfy /,//
a’
\V X ///
3 (a ) =a” t t — F—t—t—1>X
. -5 3 7,1/ 11 3 5
4. (ab) =a'b /,/ . y=log.x
P /// 3
. . 7 _4,,
Properties of Logarithms
Given positive real numbers x, y, a, and b, witha # 1 and b # 1, Figure 1 Case1:0<a<1

and real number r, the following properties hold.

1. log, x=yeox=a"

2. log, (a") =X

I
3. a®"=x

4. log,(xy)=log, x+log, y

5. log, Xo log, x—log, y
y

6. log, (x’ ) =rlog, x

ithmi : Figure 2 Case 2: a> 1
Change of logarithmic base: log, x = 0g,* g
log, b
Change of exponential base: a* = bl"gb(“") — prlomsa

(in pal’ﬁCu]ar, a’ = eln(a ) — exlna)
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Appendix C Trigonometric and Hyperbolic Functions

The historical records of trigonometry date back to the second millennium BC, and we know of a number of different cultures
(Egyptian, Babylonian, Indian, and Greek among them) that studied and used the properties of triangles. Our word “trigonometry”
comes from an ancient Greek word meaning “triangle measuring,” and the names of the individual trigonometric functions
have similarly ancient roots. The study of how different cultures independently discovered the basic tenets of trigonometry, how
trigonometric knowledge was further developed and disseminated, and how early civilizations used trigonometry for scientific
and commercial purposes is fascinating in its own right and well worth exploring. Many excellent resources for such exploration
are available online, in books, and in scholarly articles.

In contrast, the history of hyperbolic functions dates back only to the 18™ century AD; the Italian mathematician Vincenzo Ricatti
(1707-1775) and the Swiss mathematicians Johann Heinrich Lambert (1728-1777) and Leonhard Euler (1707—-1783) were
among the first to recognize their utility. But their development and characteristics have much in common with trigonometric
functions, and they are useful today when solving differential equations and as antiderivatives of certain commonly occurring
expressions.

For the purpose of quick reference, this appendix contains the basic definitions and graphs of the trigonometric and hyperbolic
functions, along with frequently used identities and associated concepts.

Basic Definitions and Graphs

Radian and Degree Measure Trigonometric Functions
180° = 7 radians y
. (x.7)
1° =" radians 1 radian = —
180 0
x°= x| —— | radians x radians = x 180
180 s r y
0
_ || >
0] X (x,0)
sinf =2 csc=" (for y = 0)
r y
cosf="2 sec="_ (for x # 0)
r X
Arc Length Area of a Sector
0 0 Y tanﬁzz(forx;tO) cotﬁzﬁ(fory;tO)
s=| — (27rr):r0 A= — (7””2)=— . Y
27 27 2

Angular Speed Linear Speed

_ro_
t

K
w=- V=— rw
t



Commonly Encountered Angles
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-1+

0 0° 30° 45° 60° 90° 180° 270°
Radians 0 z z e z 3
6 4 3 2 " 2
1 1 NE)
i 0 — — — 1 0 -1
sin@ 5 NG 5
N 1 1
1 = — = 0 -1 0
coséd 5 NG 5
1
tang 0 — 1 NE) — 0 —
V3
Trigonometric Graphs
Sine Cosine Tangent
' y=sinx Az Y =cosx A _y=tanx
1+ Jf\ /\ i i
f f / > X f —> X i ; Z X
5 7\%”/# %\ir/% 2 z ™ 37” 2
Cosecant Secant Cotangent
A y=cscx A y=secx A y=cotx
U e Je e \
i f i X i f ; f > X i i X
% T 37” 27 % 77 37" 2w % T 37” 27

\[i

Trigonometric Identities

Reciprocal Identities

CSCX =

- secx =
sin x cos x tan x

sinx = cosx =

a
csCXx secx cotx

Cofunction Identities

(T
cosx=sin| ——x
(2 )

T
cscx=sec| ——x
(2 )

™
cotx=tan| ——x

2

. s
sinx =cos| ——x
2

™
S€C X = CSC E—X

™
tanx =cot| ——x
2

A-9
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Quotient Identities

sin x
tanx =

COoS x

Period Identities
sin(x+27) =sinx
cos(x+27r) =CoSXx

tan (x+) = tanx

Even/Odd ldentities

sin(—x) =-—sinx cos(—x) =Cosx tan(—x) =—tanx

csc(—x) = —cscx sec(—x) =secx cot(—x)=—cotx

Pythagorean Identities

sin? x+cos’ x =1

2 2
I+cot"x=csc” x

csc(x+2m) =cscx
sec(x+ 27r) =secx

cot(x+7)=cotx

tan® x+1=sec’ x

Sum and Difference Identities

sm(u +v

sinu cos v+ cosu sinv

)=
sin (u—v) =sinu cosv—cosusinv

cos(u+v):cosucosv sinu sin v
cos(u—v)=cosucosv+sinusiny
tanu +tanv
tan(u+ )=—
l—tanutanv
tanu —tanv
tan (1 — v) = 1Y
1+tanu tanv

Double-Angle Identities

sin2u = 2sinu cosu

cos2u =cos’u—sin*u=2cos’u—1=1-2sin’u

2tanu
tan 2u =

1—tan’u

Power-Reducing ldentities

) 1—cos2x

sin” x =
2
) 1+cos2x
cos” X = ———
2
) 1—cos2x
tan- x = ——
1+ cos2x

Half-Angle Identities

. 1—cosx
siIn— ==
2
X 1+cosx
cos— ==
2
x l—cosx sin x
tan — = =

2 sin x 1+cosx
Product-to-Sum |dentities
sinxcos y = %[sin(x+ y)+sin(x-y)]
cosxsin y = %[sin(x+ y)—Sin(x‘y)]
sinxsin y = %[cos(x—y)—COS(Xny)]

COSXCOSy = %[cos(x+y)+cos(x—y)}

Sum-to-Product Identities

sinx+siny:ZSin(x;yjcos(x_yj
sinx—siny=2cos(x;yjsin(x_yJ

cosx+cosy=2cos(x;yjcos(x_yj

[ x+
COS X —COS y =—28in



The Laws of Sines and Cosines
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B
The Law of Sines The Law of Cosines
sind _sinB _sinC a =bh>+ct—2bccos A c a
a b ¢ b*> =a’ +c* —2accos B c
¢’ =a’ +b* —2abcosC A4 b
Inverse Trigonometric Functions
Arcsine, Arccosine, and Arctangent
Function Domain Range Notation
. T T . - .
Inverse Sine [—1,1] [—3,5} arcsinx =sin” x=y < x=siny
Inverse Cosine [—1,1] [O,ﬂ] arccosx=cos 'x=y <& xX=cosy
T 4
Inverse Tangent (—o0,0) (—5 , 5] arctanx=tan ' x=y < x=tany
Inverse Trigonometric Graphs
Inverse Sine Inverse Cosine Inverse Tangent
y y y
. A
27 1
R % ___________
— -1
y=sinx B kA
B el -3 -2 -1 1 2 3
: ‘ > x 2 y=c0s X
-1 I D N I
2
} * > X
_z | -1 1
2

Inverse Cosecant

y y

[SIE)
<

r Il
(¢}
©n

o O‘
R,_

Bl Bl

Inverse Secant

Inverse Cotangent

y

Inverse Trigonometric Identities

-1 ] -1 afl
CSC X =sIn — S€C X =cCos —
X X

1 . _
cot” x=tan"'| — |, with cot” 0=~
X 2

A-11
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Hyperbolic Functions
Hyperbolic Functions and Their Graphs

Hyperbolic Sine Hyperbolic Cosine Hyperbolic Tangent
sinhx = < coshx =< e tanh x = sinh ¢ =2 _e_
coshx e"+e™
y
A
2 €4
y=1
y=tanhx
‘ | ‘ F>x
-2 -1 1 2
”””””” 1T y=a1
_2 4
Hyperbolic Cosecant Hyperbolic Secant Hyperbolic Cotangent
cschx = L2 sechx = L2 cothx = L _ete

sinhx e"—e* coshx e"+e™” tanhx e"—e™”

Elementary Hyperbolic Identities

cosh” x—sinh® x =1 sinh 2x = 2sinh x cosh x cosh 2x = cosh® x +sinh” x
) ) . cosh2x—1 . . .
tanh” x =1-sech” x sinh” x = — smh(x+ y) = sinh xcosh y + cosh xsinh y
h2x+1 . .
coth” x =1+csch’ x cosh? y = SX X T2 cosh (x+ y) = cosh xcosh y +sinh xsinh y
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@8 A Recurring Theme

Gauss considered the Funda-
mental Theorem of Algebra so
important that he returned to the
topic repeatedly, publishing a to-
tal of four different proofs over his
lifetime—the first in 1799, two in
1816, and the fourth in 1850.

Im

® 3 +
—-1+3i

241

3 2 -1 9 1 2 3

1—i

Figure 1
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Complex Numbers

The complex numbers, an extension of the real numbers, consist of all numbers that can
be expressed in the form a + bi, where a and b are real numbers and i, representing the
imaginary unit, satisfies the equation i* = —1. Complex numbers expand the real numbers
to a set that is algebraically closed, a concept belonging to the branch of mathematics
called abstract algebra. Girolamo Cardano (1501-1576) and other Italian Renaissance
mathematicians were among the first to recognize the benefits of defining what we now
call complex numbers; by allowing such “imaginary” numbers as 7, which is a solution of
the equation x* + 1 = 0, mathematicians were able to devise and make sense of formulas
solving polynomial equations up to degree four. Later mathematicians conjectured that
every nonconstant polynomial function, even those with complex coefficients, has at least
one root (a number at which the polynomial has the value of 0), assuming complex roots are
allowed. Repeated application of this assertion then implies, counting multiplicities of roots,
that a polynomial of degree n has n roots; stated another way, an n"-degree polynomial
equation has n solutions (some of which may be repeated solutions). The first reasonably
complete proof of this conjecture, now known as the Fundamental Theorem of Algebra, was
provided by Carl Friedrich Gauss (1777—-1855) in 1799 in his doctoral dissertation.

Unlike real numbers, often identified with points on a line, complex numbers are typically
depicted as points in the complex plane, also known as the Argand plane, which is named
after the French Swiss mathematician Jean-Robert Argand (1768—1822). The complex plane
has the appearance of the Cartesian plane, with the horizontal axis referred to as the real axis
and the vertical axis as the imaginary axis. A given complex number a + bi is associated
with the ordered pair (a,b) in the plane, where a represents the displacement along the
real axis and b the displacement along the imaginary axis (see Figure 1 for examples). In
this context, a is called the real part of @ + bi and b the imaginary part. Real numbers are
thus complex numbers for which the imaginary part is 0 (they can be written in the form
a+ 0 - i), and pure imaginary numbers are complex numbers of the form 0 + bi; the origin
of the plane represents the number 0 + 0 - i and is usually simply written as 0. Two complex
numbers a + bi and ¢ + di are equal if and only if @ = b and ¢ = d (that is, their real parts are
equal and their imaginary parts are equal).

Sums, differences, and products of complex numbers are easily simplified and written in
the form a + bi by treating complex numbers as polynomial expressions in the variable
i, remembering that iP=-1. (Keep in mind, though, that 7 is not, in fact, a variable—this
treatment is simply a convenience.) Example 1 illustrates the process.

@ SEWJERM Adding, Subtracting, and Multiplying Complex Numbers

Express each of the following complex expressions in the form a + bi.

a. (4+3i)+(-5+7i) b. (—2+3i)—(-3+3i)
c. (3+2i)(-2+3i) d. (2-3i)
Solution
a. (4+3i)+(-5+7i)=(4-5)+(3+7)i

=-1+10;

b. (=2+3i)—(-3+3i)=(-2+3)+(3-3)i
1
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. (3+2i)(-2+3i)=—6+9i—4i+6i

=—6+(9-4)i-6 Replace i* with 1.
=-12+5i
d. (2-3i)" =(2-3i)(2-3i)
=4—6i—6i+9i’
=4-12i-9 Replace i* with —1.

=-5-12i

Division of complex numbers is slightly more complicated, but a quotient can also be
simplified and written in the form a + bi by making use of the following observation.

(a+bi)(a—bi) =a’ —abi+abi-b*i* =a* +b*

Given a complex number z = a + bi, the complex number z = a—bi is called its complex
conjugate. We simplify a quotient of complex numbers by multiplying the numerator and
denominator by the complex conjugate of the denominator, as illustrated in Example 2.

Z@FIE WA Simplifying Quotients of Complex Numbers

Express each of the following complex expressions in the form a + bi.

2+3i - 1
Rl b. (4-3i)" c -
3—i i
Solution
2+3i (2 +3i ) (3 +i ) Multiply the numerator and
3-i (3 - i) (3 + i) denominator by the conjugate.
_ 6+2i+9i+3i°
9+3i-3i—i’
= M Replace i* with 1.
9+1
_3+1L 3 Ei
10 10 10
-1 1
b. (4-3i) =
( ) 4-3i
_ 1(4 +3i ) Multiply the numerator and
B (4 -3 ) (4 +3i ) denominator by the conjugate.
_ 4+3i
16+12i—12i -9’
_4+3i 4 3

= =—+—i
16+9 25 25

G e A
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Endowed with the operations of addition and multiplication, the set of complex numbers,
like the set of real numbers and the set of rational numbers, form what is known as a field,
another concept from the realm of abstract algebra. The following table summarizes the
properties possessed by a field; note that each of the three sets of numbers mentioned above
possesses all the properties. Also note, by way of contrast, that the set of natural numbers,
the set of integers, and the set of irrational numbers are not fields, as each set fails to possess
one or more of the field properties.

Field Properties

In the following properties, a, b, and ¢ represent arbitrary elements of a given field.
The first five properties apply individually to the two operations of addition and
multiplication, while the last property combines the two operations.

Name of Property Additive Version Multiplicative Version
Closure a + b is an element of the field ab is an element of the field
Commutative a+b=b+a ab = ba

Associative a+(b+c)=(a+b)+c a(bc)=(ab)c

Identity a+0=0+a=a a-1=1.-a=a

Inverse a+(-a)=0 a % =1, assuming a # 0
Distributive a(b+c)=ab+ac

The introduction of the imaginary unit i allows us to now define the principal square root
Ja of any real number a, as follows: Given a positive real number a, Ja denotes the
positive real number whose square is a, and J-a =ia. An application of this definition
explains the restriction in one of the properties of exponents (specifically, the exponent 1/2).
Recall that if @ and b are both positive, then

Jab = (ab)l/2 =a"p"? =Ja/b.

To see why a and b are required to be positive, note that

(-9)(-4) =36 =s.

but

J29J=4 = (;\/6)(1\/2) = (3i)(2i) = 6i* = —6.

Complex numbers can also be expressed in polar form, based on the polar coordinates of
a given complex number in the plane. We say the magnitude |z| of a complex number
z = a + bi, also known as its modulus, norm, or absolute value, is its distance from 0 in the
complex plane—that is, the nonnegative real number

|Z| =+Ja*+b%.

The argument of z, denoted arg(z), is the radian angle 6 between the positive real axis
and the line joining 0 and z. The quantities |Z| and arg(z) thus play the same roles,
respectively, as the polar coordinates » and 6 of a point in the plane. The argument of the
complex number 0 is undefined, while the argument of every other complex number is not
unique (any multiple of 27 added to the argument of a given complex number describes the



same number, since 27 corresponds to a complete rotation around the origin). Given these
definitions, and letting 6 = arg(z), the polar form of z = a + bi is then

z=r(cosf+isinf), where r=|z|

, and 6).

(see Figure 2 for a depiction of the relationship between a, b, r, |z

Z@ S E R Writing Complex Numbers in Polar Form

Write each of the following complex numbers in polar form.
a. 1+i\3 b. -1+

Solution

2
a. The magnitude of 14443 is NS +(\/§) =2, and its argument is tan~' /3 = 7/3

(see Figure 3). Hence,

1+i\/§ =2(cos§+isin§).

b. The magnitude of —1+17 is J(—l)2 +17 = \/5, and its argument is 37/4 (note
that this complex number lies in the second quadrant of the plane, as shown in
Figure 4). Hence,

3T 3T
—1+i=\/§ coS— +isin— |.
( 4 4j

Euler’s formula e” = cosf +isinf, derived in Section 10.9, allows us to express the polar
form of a complex number as a complex exponential:

z=re”, where r=|z| and 6 =arg(z).

With this observation, the following formulas regarding products and quotients of complex
numbers are easily proved (they can also be proved by using the trigonometric sum and
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Im
A z=a+bi
bi + |
r=z|=Va*+b/ |
b= |Z|sin9
/ |
/ tanf = v |
a !
} > R
0 a= |z| cosf a ¢
Figure 2
Im
3
it
2/
E
0 i Re
Figure 3
Im
l‘ 4
L \\2
i 37
: 4
_!1 0 > Re
Figure 4

difference identities).

Products and Quotients of Complex Numbers

Given the complex numbers

z, =r(cosf, +isin6,) and =z, =r,(cosb, +isind,),
the following formulas hold.

Product Formula z,z, =rr, [cos (6, +6,)+isin(6, +6, )]

Quotient Formula — = i|:cos(t91 —0,)+isin(6, -0, )], assuming z, # 0
2

Zz, r.
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Writing each complex number as a complex exponential,
z,z, = (rleia‘ )(rzeie2 ) = lflrzei(g‘%) =nr, ':005(91 +0,)+ isin(91 +6, ):I
and

i,
i _rlem =0 i) - i[cos (6,-6,)+isin(6, -0, )J
n

2
z, re r,

The following statement regarding positive integer powers of complex numbers can be
similarly proved.

De Moivre’s Theorem

Given a complex number z = r(cos 0 +isin 0) and positive integer 7,

z" =r"(cosnf +isinnf).

& Proof

Again writing z as a complex exponential,

n_inf __

., n
z" =(re’9) =r"e™ =r"(cosnf +isinnf).

De Moivre’s Theorem can be used to determine roots of complex numbers.
The first step is to note that if w=re” is a nonzero complex number, and if 7 is a positive
integer, then w has n n™ roots. This follows from the Fundamental Theorem of Algebra,
which tells us that the equation z” = w has n solutions (here, z represents a complex variable).
One n" root is easily determined: if we let

z, = rl/nei(G/n)

>

then

zy = [rl/"ei(g/")] =re” =w.

But as we know, replacing 6 with 6 + 2k results in an equivalent complex number for any
integer £, leading to the following formula for the n™ roots of w.

Roots of a Complex Number

Let w=r(cosf+isinf) and let n be a positive integer. The 1 roots of w are given by

(0+2kr
z, =rl/"e{ +" ], k=0,1,...,n—1.

Alternatively,

z, =r"" [cos(e—ﬂkﬂj+isin(9+2kﬂﬂ, k=0,1,...,n-1.
n n
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The n n" roots of a given complex number all have the same magnitude and are equally
distributed around a circle in the complex plane with radius equal to that common magnitude.

Z@SE YN Finding and Graphing Roots of a Complex Number

Determine the specified roots of the given complex numbers, and graph the roots and
the original complex numbers in the plane.

a. 5™ roots of 1 b. 4% roots of —1 —i\/g

Solution
a. The easiest way to determine the 5" roots of 1 is to write 1 as a complex exponential

and then apply the above formula with n = 5:

-7 S~ l=e

- N s

/ \ so the 5™ roots of 1 are

{1 o33 ildnss) - i(6nfs) - ils/s) }

AN . Since the complex number 1 (shown as a blue point in Figure 5) has a magnitude of
1, all of the five 5™ roots (shown as red points in the figure) lie on a circle of radius
1. Note that 1 is, itself, one of the 5" roots of 1.

Figure 5 b. The first step is to again express the complex number as a complex exponential.

Note that
[-1-i3] = (1)’ +(—J§)2 —Ja=2

—\/§ 47

= 0=—,
3

and

Im tan6 =
¥ -1

e A S SO
i ' “1—if3 =264,

1
' 0 ! Re i .
=1 i Hence, the 4" roots of —1—i+/3 are

{21/4 o) , /4 ,i(57/6) , /4 il4/3) ’ /4 ,i(117/6) } )

k=0,1,2,3

. L {21/4 e(i/4)[(47r/3)+2kﬂ]}

o Vit Figure 6 shows the original point —1—i+/3 in blue and its four 4" roots in red.
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Appendix E Proofs of Selected Theorems

In this appendix, we provide proofs (or in one case just a statement) of theorems used in the
main body of the text. While some of the proofs here are more technical in nature than those
presented elsewhere, they are worth studying in order to (1) gain additional insight into the
rigorous nature of mathematical thinking and (2) develop a sense of the deeper mathematics
to come in later courses.

Section 2.4 Basic Limit Laws

Let f and g be two functions such that both lim f'(x) and limg(x) exist, and let k

be a fixed real number. Then the following laws hold.

Sum Law 1im[f(x)+ g(x)} = £1_r)rclf(x)+£1_r)rclg(x)

x—c

Difference Law lim[f(x) - g(x)] = liinf(x) -~ ligl_g(x)

x—c

Constant Multiple Law lim[kf (x)] =klim f(x)

x—c

Product Law lim[f(x)g(x)] = 11_1}1}f()¢) limg(x)

x—c x—c

f(x) lim /(x)

_ Xo¢

m =
e g(x)  limg(x)

Quotient Law , provided lim g (x) = 0

We already proved the Sum Law in Section 2.4. We proceed to prove the Product Law
and Quotient Law, from which the remaining laws will follow quickly.

As in the proof of the Sum Law, let L =lim f(x) and M =limg(x), and assume
£ >0 is given. Our goal is to show there exists 6 > 0 such that |f(x)g (x)- LM| <e

for all 0< |x—c| < 6. One way to determine § is to employ a strategy of adding and
subtracting the same quantity, in this case f'(x)M.

|f(x)g(x)—LM| =|f(x)g(x)—f(x)M+f(x)M—LM|
< ‘f(x)[g(x)—M]‘ +‘M[f(x)—L]‘ Triangle Inequality
=17 (ol ()=l + M7 (x) -
Since L = lxlirz f (x), we know there exists 6, > 0 for which
0<|x—c|<61 = |f(x)—L|<1,

so |£(x) =|7(x)-L+L|<|f(x)-L|+]z]<1+]].

Similarly, there exists 6, > 0 for which

3
0<|)C—C|<(S2 = |f(x)—L|<2(TW|)

And finally, since M =lim g(x), there exists ¢, > 0 for which

x—c
3

0<|x—c|<63 = |g(x)—M|< 2(1+|L|)'
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So, if we let 6 = min{él, 0,, 63}, 0< |x—c| <6 will guarantee each of the above
three outcomes, meaning

|/ (x)g (x) = LM< | f (x)||g (x) - M| +[M]| £ (x) - |
<y M 2

€ €
<—+—=g¢g,
2 2

thereby proving the Product Law.

To prove the Quotient Law, we will see that it suffices to prove

)

1
e g (x) M
under the assumption that M = 0. In doing so, we will use the fact that ||a| - |b|| < |a - b|
for arbitrary real numbers a and b. This follows from the observation that

|a| = |a -b+ b| < |a - b| +1b|, Triangle Inequality

S0 |a| —|b| < |a —b|. Similarly, interchanging a and b in the same argument shows that
|b| - |a| < |b - a| = |a - b|, and the two facts together prove that ||a| - |b|| < |a - b|.

Now, given € > 0, we need to show there exists 6 > 0 for which 0 < |x - c| <6 implies

g(x)_ﬁ €.
Since
L [Mee@) 1
<) | [ et | gl Tl #M!

we want to choose ¢ in such a manner that | g (x) -M | is sufficiently small and so that

| g(x)| is far enough away from 0 to make

also sufficiently small. The fact that M =lim g(x) tells us there is a 6, > 0 for which
0<|x—c| <6, implies |g(x)—M| <|M|/2, meaning

0<|x—c|<6l = Hg(x)|—|M”S|g(x)—M|<@, Using Ha‘f‘b“ﬁ‘afb‘

and so
M M
_IM| 2| <|g(x)|-|M] <—| > |.

Adding |M | throughout results in the equivalent double inequality
|M

M e o)

2

3|M|
< —
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whenever 0 < |x—c| < ¢,. For our present purposes, we actually only care about the
fact that

|M| . 1 2
g(x)>—=, which means that —— <—.
1> EENE

There is also a ¢, > 0 such that
M2
0<|x—c|<s, = |g(x)—M|<¥,
so if we let § =min{6,, §,}, we have
11 11 2 1 M|«
0<|x—c|<6:>| -——|= -—-g(x)—M < T ——— =6,
O e N T T
thus proving
lim—— =~
x%cg(x) M.

‘We can now apply the Product Law, already proved, to obtain the Quotient Law.

anﬂim{f(x). ! }

oeglx) o g(x)

=lim f (x)-lim

Product Law

X—C X—C g(x)
1 1imf(x)
= =z’ 7
M limg(x)

x—c

The Constant Multiple Law is a consequence of the Product Law, using g (x) =k asone
of the two functions, and the Difference Law follows from applying first the Sum Law and
then the Constant Multiple Law (with k= —1).

Positive Integer Power Law

Let f be a function for which lim f (x) exists, and let m be a fixed positive integer.
Then o

tim( £ (x)]" =[tim £ (x)] "

x—c x—c

The statement is trivially true for m = 1, so we prove the theorem for m > 2. We use
mathematical induction to do so.

Basis Step: By the Product Law, we have

tim[ £ (x)] =tim[ /(x) / (x)] =[limf(x)T.

x—c x—c

Inductive Step: Assume lim[f(x)}k = [limf(x)}k for some k> 2. Then again

applying the Product Law, we complete the proof as follows.
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Section 2.4

Section 2.4

x—c x—c

tim{ £ (x)]"" =tim([ 1 (x)] 1 (+))

=tim[ £ (x)]" -lim £ (x) Product Law

x—c x—c
x—c x—c¢

=[1im ()]

X—=>c

= [limf(x)T ~limf(x) Induction hypothesis

The Squeeze Theorem

If g(x)< f(x)<h(x) forall x in some open interval containing ¢, except possibly
at ¢ itself, and if limg(x)=1limA(x) =L, then lim /' (x)=L as well.

The statement also holds for limits at infinity, that is, for ¢ = —o0 or ¢ = .

Since g(x)< f(x)<h(x) for all x in some open interval containing c, there exists
6,> 0 such that 0<|x—c|<é8 = g(x)< f(x)<h(x). And by the limit definition,
given ¢ > 0 there exist 6, > 0 and 6, > 0 such that

0<|x—c|<s, = |g(x)—L|<5 = L-e<g(x)<L+e
and
O<|x—c<8, = |n(x)-L|<e = L-e<h(x)<L+e.

By letting § =min{§,, 6,, 6, }, all three conclusions are true for x within & of ¢. That
is,

0<|x—c|<6 = L-e<g(x)<f(x)<h(x)<L+e = |f(x)—L|<s.

Upper Bound Theorem

If f (x) < g(x) for all x in some open interval containing ¢, except possibly at ¢
itself, and if the limits of / and g both exist at ¢, then

lim /' (x) <limg(x).

Let L=1lim f (x) and M =lim g(x). Note that, by the Difference Law, the limit of
g(x) - f(x) at ¢ exists, and

lim[ g (x) =/ (x) ] =lim g (x)~lim f(x) = M - L.

x—c

Suppose, in contradiction to the claim, that L > M. Then L — M > 0, and if we let
e =L — M, there exists 6 > 0 such that
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O<|x—c|<6 = |g(x)—f(x)—(M—L)|<s
= —5<g(x)—f(x)—M+L<€

= M-L<g(x)-f(x)-M+L<L-M.

(x
In particular, g(x)—f(x)—M+L <L-M, so g(x)—f(x) <0 for all x such that
0 <|x—c| <4, contradicting the fact that f(x)< g(x
containing c. Thus, it must be the case that L < M; that is, lim f (x) <lim g(x).

) for all x in some open interval

“Limits Pass through a Continuous Function”

Suppose lim g (x) =a and f is continuous at the point a. Then
tim /(s (x)) = / (lime (x)) = 7 ().

In words, we say the limit operation passes inside the continuous function f.

Assume ¢ > 0 is given. Since f is continuous at a, there exists 6, > 0 for which
|x—a| <6 = |f(x)—f(a)| <e.

And since !grcl g(x) = a, there exists 6 > 0 such that
0< |x—c| <6 = |g(x)—a| <¥,.

Putting these facts together, we see that

0<|x—c|<6 = |g(x)—a|<61 = ‘f(g(x))—f(a)‘<5,

and hence !Clilclf(g(x)) =f(a).

“The Inverse of a Continuous Function Is Continuous”

If 1 is one-to-one and continuous on the interval (a, b), then f~' isalso a continuous
function.

We first show that f is strictly monotonic on (a,b), and we do so by applying the
Intermediate Value Property to a number of cases, all of which are similar. If f is
neither strictly increasing nor strictly decreasing, then there must be points x, <x, < x,
in (a,b) for which f(x,) does not lie between f(x,) and f(x,). We will show
that cannot happen, using a proof by contradiction.

To that end, suppose x,, x,, and x, are three points in (a,b) for which x, <x, <x,
and for which f (xz) does not lie between f (xl) and f (x3). Since f is one-to-
one, either f(x,)< f(x;) or f(x,)> f(x;); we will assume that 1 (x,)< f(x;)
and leave consideration of the other case to the reader. The assumption that f (xz)
is not between f (xl) and f (x3) again leads to two cases, one of which is that

F(x)< f(x;)< f(x,). Letybe a value such that f(x,)<y< f(x,).
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Then by the continuity of f and the Intermediate Value Property (see Section 2.5),
there is a point p such that x,<p<x, and f(p)=y (in words, there is a point
between x, and x; at which f takes on the value y, since y lies between the values of f
atx, and x,). But since f(x,)< f(x;), yalso satisfies f(x,)<y < f(x,), so there
is a point ¢ such that x, <g <x, and f (q) = y. But then p # g (since x, lies strictly
between them) and f ( p) =f (q), contradicting the fact that f is one-to-one. By the
same reasoning, the possibility that f(x,)< f(x,)< f(x;) is also ruled out, as are
the two cases for which f'(x,) > f(x;). Thus, f must be either strictly increasing or
strictly decreasing.

To now show that f~' is continuous we will assume f is strictly increasing—the
argument that £~ is continuous when f is strictly decreasing is similar in nature.
Let y, be a point in the image of (a,b) under f, and let € > 0 be given. Since y, is
in the image set, there is a (unique) point x, € (a,b) for which f(x,)=y,. Define

e, =min{e, x,—a,b—x,}.

Then, since we are assuming f is increasing, the image of the interval (x0 —€,,X, TE )

is the interval (f(x0 —&), f(x +¢ )), and y, € (f(x0 —&), f(x +¢ )) Choose
6> 0 small enough so that

(yo =6,¥, +6) c (f(xo —51),f(x0 & ))

Then for any y such that |y—y0|<§, J’E(f(xo—ff]),f(x0+el)) and hence
77 (v)e(x,—€.x, +¢,). Thatis,

|y_yo|<‘S = |f71(y)_fil(yo)|<51 e

and hence ' is continuous at y,. Since y, was arbitrary, we have shown that ' is
continuous on the image of (a,b) under f.

Section 4.1 Bolzano-Weierstrass Theorem (Statement Only)

Every bounded sequence of real numbers has a convergent subsequence.

The Bolzano-Weierstrass theorem has many uses, one of which is to help prove the Extreme
Value Theorem of Chapter 4. Specifically, its use assures the existence of points in a closed
and bounded interval at which a continuous function attains its extreme values.

Section 10.8 Taylor’s Theorem

If f and its derivatives up through f (") are all continuous on the closed interval [a, b]
andif f () exists on the open interval (a,b), then there is a number ¢ € (a,b) such
that

(g . ™) (4 e »
f(b):f(a)+f’(a)(b—a)+f2(' J(p-ay +s? f )(b-a) +f—p(b_a) |
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The preceding statement is actually just one variant of Taylor’s Theorem, and each
variant has, in turn, several slightly different methods of proof. We will use Cauchy’s
Mean Value Theorem (Section 4.4) to prove this variant.

We begin by defining

"(x ) O (x n
F)= ) 7 @0 D ey s L

! n!

and
G(x) = (b - x)"+l .

Given these definitions, we have the following.

F(b)=7(b)

Fla)= 1@+ @0+ LD o s LDy
6(6)=0
6(a)=(o-a)"

Note also that

and
G'(x) = —(n+l)(b—x)n .
The functions F and G satisfy the hypotheses of Cauchy’s Mean Value Theorem, and
therefore there is a point ¢ € (a,b) for which
F'(c) _F(b)-F(a)
G'(c) G(b)-G(a)

>

which we will rewrite in the form

Making use of the above notes, we have the following result.

f(b)=F(b)
f(n+1)(c) .,
n| (b—C) n+l
= ey (-]
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Section 13.3

Figure 1

Clairaut’s Theorem

If f (x, y) and the partial derivatives f,, f, f,,, and f, are all defined on an open
region containing the point (a,b), and if f, and f are continuous at (a,b), then

/(ab)= 1. (a.b).

We begin by choosing Ax # 0 and Ay # 0 small enough so that the rectangle with
vertices (a,b), (a+Ax,b), (a+Ax,b+Ay), and (a,b+Ay) is entirely contained
within the open region of the hypotheses (see Figure 1), and we define

A=[f(a+Ax.b+Ay)-f(a+Ax,b)]-[ f(a.b+Ay)-f(a.b)]
If we further define g(x) = f(x,b+Ay)—f(x,b), then
A=g(a+Ax)-g(a)
and by the Mean Value Theorem there is a point p between a and a + Ax for which
A=(Av)g'(p)-

Note that g'(x) =1 (x,b + Ay)— I (x,b), and by a second application of the Mean
Value Theorem there is a point ¢ between b and b + Ay for which

g'(r)=(w) 7, (p.q)

Substituting this into the expression above, we have
A=(Ax)(ar) 1, (p.g).

However, if we define /(y)= f(a+Ax,y)— f(a,y), then A can also be written as
A=h(b+Ay)-h(b),

and a third application of the Mean Value Theorem tells us there is a point s between
b and b + Ay for which

A=(Ay)h'(s).

Since h'(y)=f,(a+Ax,y)-f,(a,y), one final application of the Mean Value
Theorem implies there is a point  between a and a + Ax for which

W (s)=(Ax) . (r:s),
and hence

A=(8)(&) 7, (5).

Equating the two expressions for A, we have f ( p,q) = (r,s), where ( p,q)
and (r, s) are both inside the rectangle with dimensions Ax and Ay. The continuity of
both f, and f, at (a,b) means that

Iy (p,q) =1, (a,b)+ e and f (r,s) =f (a,b)+€2
where each of ¢, and €, approach 0 as (Ax, Ay) - (O, O) , and so it must be the case that

Iy (ab)= 71, (a.b).
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The Increment Theorem of Differentiability

If the partial derivatives of f (x, y) exist throughout an open region R containing the
point (a,b), and if f, and f, are both continuous at (a,b), then £ is differentiable at
(a,b). That is, the increment Af" at (a,b) can be written as

Af = f.(a,b)Ax+ f, (a,b) Ay +e,Ax +e,Ay
where both ¢, and ¢, approach 0 as (Ax, Ay) — (O, 0). Hence, if the partial derivatives
are continuous throughout R, f is differentiable on all of R.

Analogous statements apply to functions of three or more variables.

The increment Af at (a,b) can be written in the form
Af:f(a+Ax,b+Ay)—f(a,b),

and since we are interested in the form of the increment as Ax and Ay approach 0, we
can assume they are already sufficiently small so that the line segment from (a, b) to
(a+Ax,b) and the line segment from (a+ Ax,b) to (a+ Ax,b+ Ay) both lie entirely
within the open region R (see Figure 2). We add and subtract f (a + Ax,b) so that

Af = f(a+Ae,b+Ay)- f(a+Ax,b)+ f(a+Ax,b)- f(a,b),

and we define g(y)zf(a+Ax,y) and h(x)zf(x,b). By the Mean Value
Theorem, there exists a point p between b and b + Ay and a point g between a and
a + Ax for which

g(b+ay)-g(b)=(Av)g'(p) and h(a+Ax)-h(a)=(Ax)A'(q).
Since g'(y)=f,(a+Ax,y) and h'(x)= f,(x,b), we now have
Af = f(a+Ax,b+Ay)- f(a+Ax,b)+ f(a+Ax,b)- f(a,b)
=g(b+Ay)-g(b)+h(a+Ax)—h(a)
=(ay)g'(p)+(ax) ()
= (&) f, (a+Ax, p)+(Ax) £, (,b)-
The fact that f, and f, are both continuous at (a,b) means that if we define
e = f.(qb)~f.(ab) and <, =f (a+Axp)-f (a.b).

then both £, and €, have limits of 0 as (Ax,Ay) — (0,0) (note that ¢ — a as Ax — 0
and p —» b as Ay — 0). Hence,

Af =(Ay) f, (a+Ax, p)+(Ax) £, (¢,)
(Ay)[ (ab)+52] Ax)[fx a,b)+sl]

fx(a )Ax+f (a b)Ay+5 Ax +¢e,Ap.
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