Properties of Addition and Multiplication

$$a+b=b+a$$

$$(a+b)+c=a+(b+c)$$

$$a+0=0+a=a$$

$$a + (-a) = 0$$

Commutative

Multiplication

$$a \cdot b = b \cdot a$$

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

$$a \cdot 1 = 1 \cdot a = a$$

$$a \cdot \frac{1}{a} = 1$$
 $(a \neq 0)$

Distributive Property of Multiplication over Addition $a(b+c) = a \cdot b + a \cdot c$

Rule for Exponents

For any real number a and integers m and n:

The exponent 1: $a^1 = a$

The exponent 0: $a^0 = 1 \quad (a \neq 0)$

Product Rule: $a^m \cdot a^n = a^{m+n}$

Power Rule: $(a^m)^n = a^{mn}$

Quotient Rule: $\frac{a^m}{a^n} = a^{m-n} \quad (a \neq 0)$

Negative exponents: $a^{-n} = \frac{1}{a^n}$ $(a \neq 0)$

Absolute Value

If x is positive or 0, then |x| = x. If x is negative, then |x| = -x.

Square Roots

For positive real numbers a and b,

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Scientific Notation

$$3.6 \times 10^{-4} = 0.00036$$

 $9500 = 9.5 \times 10^{3}$

Consumer Formulas

The Percent Formula: $R \cdot B = A$ Simple Interest: I = Prt

Compound Interest: $A = P\left(1 + \frac{r}{n}\right)^{nt}$

Inflation: $A = P(1+r)^t$

Depreciation: $V = P(1-r)^t$

First-Degree Equation (or Linear Equation) in *x*

$$ax + b = c$$

Linear Equation in Two Variables

$$Ax + By = C$$

Linear Inequalities in x

$$ax + b < d$$
 $ax + b > c$
 $ax + b \le d$ $ax + b \ge c$

$$c < ax + b < d$$
$$c \le ax + b \le d$$

Properties of Inequalities

If
$$a < b$$
 and $b < c$ then $a < c$

If
$$a < b$$
 then $a + c < b + c$

If
$$a < b$$
 and $c > 0$ then $ac < bc$

If
$$a < b$$
 and $c < 0$ then $ac > bc$

U.S. Customary and Metric Equivalents

In the following tables, the equivalents are rounded.

U.S. to Metric

Metric to U.S.

Length Equivalents

1 in.	= 2.54 cm (exact)	1 cm	= 0.394 in.
1 ft	= 0.305 m	1 m	= 3.28 ft
1 yd	= 0.914 m	1 m	= 1.09 yd
1 mi	= 1.61 km	1 km	= 0.62 mi

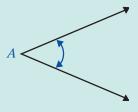
Area Equivalents

Volume Equivalents

vivii L	quiralents		
1 in. ³	$= 16.387 \text{ cm}^3$	1 cm^3	$= 0.06 \text{ in.}^3$
1 ft^3	$= 0.028 \text{ m}^3$	1 m^3	$= 35.315 \text{ ft}^3$
1 qt	= 0.946 L	1 L	= 1.06 qt
1 gal	= 3.785 L	1 L	= 0.264 gal

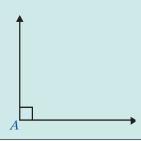
Mass Equivalents

1 oz	= 28.35 g	1 g	= 0.035 oz
1 lb	= 0.454 kg	1 kg	= 2.205 lb

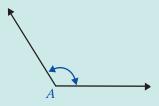

Celsius and Fahrenheit Equivalents

$$C = \frac{5(F - 32)}{9}$$
 $F = \frac{9 \cdot C}{5} + 32$

,		3
Celsius	F	ahrenheit
100°	\leftarrow water boils at sea level \rightarrow	212°
95°		203°
90°		194°
85°		185°
80°		176°
75°		167°
70°		158°
65°		149°
60°		140°
55°		131°
50°		122°
45°		113°
40°		104°
35°		95°
30°	a a marka mt	86°
25°	comfort	77°
20°	range	68°
15°		59°
10°		50°
5°		41°
0°	← water freezes at sea level —	→ 32°


Types of Angles

- 1. Acute
- $0^{\circ} < m \angle A < 90^{\circ}$


2. Right

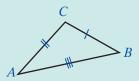
$$m\angle A = 90^{\circ}$$

3. Obtuse

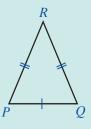
$$90^{\circ} < \text{m} \angle A < 180^{\circ}$$

4. Straight

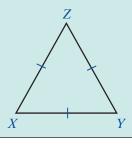
$$m\angle A = 180^{\circ}$$

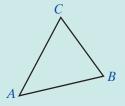

Triangles

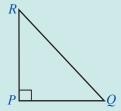
Two Important Statements about Any Triangle:

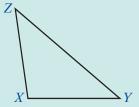

- 1. The sum of the measures of the angles is 180° .
- 2. The sum of the lengths of any two sides must be greater than the length of the third side.

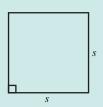
Triangles Classified by Sides


- 1. Scalene
- No two sides are equal.

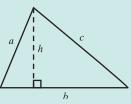

- 2. Isosceles
- Two sides are equal.


3. Equilateral All three sides are equal.


- **Triangles Classified by Angles**
- 1. Acute
- All three angles are acute.


- 2. Right
- One angle is a right angle.

- 3. Obtuse
- One angle is an obtuse angle.


Perimeter and Area

Square

$$A = s^2$$

$$P = 4s$$

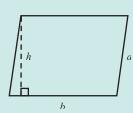
Triangle

$$A = \frac{1}{2}bh$$

$$P = a + b + c$$

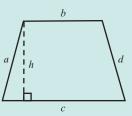
Rectangle

$$A = lw$$


$$P = 2l + 2w$$

Circle

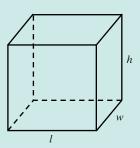
$$A=\pi r^2$$


$$P = 2\pi r = \pi d$$

Parallelogram

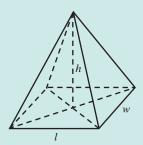
$$A = bh$$

$$P = 2a + 2b$$

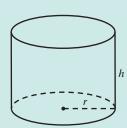


Trapezoid

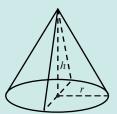
$$A = \frac{1}{2}h(b+c)$$


$$P = a + b + c + d$$

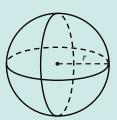
Volume


Rectangular Solid

$$V = lwh$$


Rectangular Pyramid

$$V = \frac{1}{3}lwh$$


Right Circular Cylinder

$$V = \pi r^2 h$$

Right Circular Cone

$$V = \frac{1}{3}\pi r^2 h$$

Sphere

$$V = \frac{4}{3}\pi r^3$$