CHAPTER R **Review of Basic Topics**

Exponents:

$$\underbrace{a \cdot a \cdot a \cdot a \cdot \dots \cdot a}_{n \text{ factors}} = a^n$$

Order of Operations:

Please Parentheses (start with the innermost grouping)

Excuse **Exponents**

My Multiplication moving from left to right **Division** Dear

Addition Aunt moving from left to right Subtraction Sally

Tests for Divisibility:

An integer is divisible

By 2: if the units digits is 0, 2, 4, 6, or 8.

By 3: if the sum of the digits is divisible by 3.

By 5: if the units digit is 0 or 5.

By 6: if the number is divisible by both 2 and 3.

By 9: if the sum of the digits is divisible by 9.

By 10: if the units digit is 0.

Fractions:

Reciprocal: If $a \ne 0$ and $b \ne 0$, the reciprocal of $\frac{a}{b}$ is $\frac{b}{a}$, and $\frac{a}{b} \cdot \frac{b}{a} = 1$.

Division: $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$; $\frac{a}{0}$ is **undefined**

Addition: $\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$; If the fractions do not have a common

denominator, first find the LCD, convert the two fractions to equivalent fractions with the LCD for the denominators, then add.

Subtraction: $\frac{a}{b} - \frac{c}{b} = \frac{a-c}{b}$; If the fractions do not have a common

denominator, first find the LCD, convert the two fractions to equivalent fractions with the LCD for the denominators, then subtract.

Finding the LCM/LCD:

- 1. Find the prime factorization of each number.
- 2. List the prime factors that appear in any one of the prime factorizations.
- 3. Find the product of these primes using each prime the greatest number of times it appears in any one of the prime factorizations.

Decimals:

Addition/Subtraction:

- 1. Write the numbers in a vertical column.
- 2. Keep the decimal points aligned vertically.
- 3. Keep digits with the same position value aligned.
- **4.** Add/subtract the numbers, keeping the decimal point in the sum/ difference aligned with the other decimal points.

Multiplication:

- 1. Multiply the two numbers as if they were whole numbers.
- 2. Count the total number of places to the right of the decimal points in both numbers being multiplied.
- 3. Place the decimal point in the product so that the number of places to the right is the same as that found in step 2.

- 1. Move the decimal point in the divisor to the right so that the divisor is a whole number.
- 2. Move the decimal point in the dividend the same number of places to the right.
- 3. Place the decimal point in the quotient directly above the new decimal point in the dividend.
- 4. Divide just as with whole numbers.

Percent:

To Change a Decimal to a Percent:

- 1. Move the decimal point two places to the right.
- 2. Add the % symbol.

To Change a Percent to a Decimal:

- 1. Move the decimal point two places to the left.
- 2. Remove the % symbol.

Integers and Real Numbers CHAPTER 1

Types of Numbers:

Natural Numbers (Counting Numbers): $\mathbb{N} = \{1, 2, 3, 4, 5, 6, ...\}$

Whole Numbers: $W = \{0, 1, 2, 3, 4, ...\}$

Integers: $\mathbb{Z} = \{..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$

Rational Numbers: A rational number is any number of the form $\frac{a}{\cdot}$ where a and b are integers and $b \neq 0$.

Irrational Numbers: An irrational number is any number that can be written as an infinite nonrepeating decimal.

Real Numbers: Every rational number and irrational number is a real number.

Inequality Symbols:

- < "is less than"
- > "is greater than"
- ≤ "is less than or equal to"
- ≥ "is greater than or equal to"

Absolute Value:

|a| = a if a is a positive number or 0.

|a| = -a if a is a negative number.

Operations with Integers:

For real numbers a and b, a - b = a + (-b).

For positive numbers a and b, a(-b) = (-a)b = -ab and (-a)(-b) = ab.

For real numbers a and b $(b \ne 0)$, $\frac{a}{b} = x$ if and only if $a = b \cdot x$.

Properties of Real Numbers:

Name of property noitibhA Multiplication a + b = b + aCommutative $a \cdot b = b \cdot a$ (a + b) + c = a + (b + c) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ Associative a + 0 = 0 + a = aIdentity $a \cdot 1 = 1 \cdot a = a$ $a \cdot \frac{1}{a} = 1 \left(a \neq 0 \right)$ a + (-a) = 0Inverse

Zero Factor Law: $a \cdot 0 = 0 \cdot a = 0$

Distributive Property: a(b+c) = ab + ac and (b+c)a = ba + ca

CHAPTER 2 Fractions with Variables and Algebraic Expressions

Evaluating an expression:

- 1. Combine like terms, if possible.
- 2. Substitute the values given for any variables.
- **3.** Follow the rules for order of operations and simplify.

Fractions: See Chapter R

Placement of Negative Signs: $-\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}$

The Fundamental Principle of Fractions:

$$\frac{a}{b} = \frac{a \cdot k}{b \cdot k}$$
 where $b, k \neq 0$

Decimals: See Chapter R

Order of Operations: See Chapter R

CHAPTER 3 Solving Equations and Inequalities

Linear Equation in x (first-degree equation in x):

ax + b = c, where $a \neq 0$

Addition Principle of Equality:

A = B and A + C = B + C have the same solutions (where A, B, and C are algebraic expressions).

Multiplication (or Division) Principle of Equality:

$$A = B$$
 and $AC = BC$ and $\frac{A}{C} = \frac{B}{C}$

Intervals of Real Numbers:

Name	Symbolic Representation	Graph	
Open Interval	a < x < b	4 ⊕ a	⊕ b
Closed Interval	$a \le x \le b$	a	<i>b</i>
Half-Open Interv	al ∫a <x≤b a≤x<b< td=""><td>4 ⊕ a</td><td><i>b</i></td></b<></x≤b 	4 ⊕ a	<i>b</i>
	$\begin{cases} a \le x < b \end{cases}$	a	b
Open Interval	$\begin{cases} x > a \\ x < a \end{cases}$	<i>a</i> ⊕ <i>a</i>	
Half-Open Interv	$al \qquad \begin{cases} x \ge a \end{cases}$	←	→
	[x≤a		-

Consecutive Integers:

n, n + 1, n + 2, ...

Consecutive Odd Integers:

 $n, n + 2, n + 4, \dots$ where n is an odd integer

Consecutive Even Integers:

 $n, n + 2, n + 4, \dots$ where n is an even integer

Percent Formula:

 $R \cdot B = A$

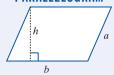
Geometric Formulas:

SQUARE

Perimeter: P = 4s

Area: $A = s^2$

PARALLELOGRAM



Perimeter: P = 2a + 2b

Area: A = bh

CIRCLE

Circumference: $C = 2\pi r = \pi d$

Area: $A = \pi r^2$

Volume Formulas:

Rectangular Solid: V = lwh

Rectangular Pyramid: $V = \frac{1}{2}lwh$

Right Circular Cylinder: $V = \pi r^2 h$

Right Circular Cone: $V = \frac{1}{2}\pi r^2 h$

Sphere: $V = \frac{4}{3}\pi r^3$

RECTANGLE

Perimeter: P = 2l + 2w

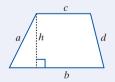
Area: A = lw

TRIANGLE

Perimeter: P = a + b + c

Area: $A = \frac{1}{2}bh$

TRAPEZOID



Perimeter: P = a + b + c + d

Area: $A = \frac{1}{2}h(b+c)$

CHAPTER 4 Graphing Linear Equations and Inequalities in Two Variables

Cartesian Coordinate System:



Summary of Formulas and Properties of Straight Lines:

1. Ax + By = C, where A and B do not equal 0. Standard form

2. $m = \frac{y_2 - y_1}{x_2 - x_1}$, where $x_1 \neq x_2$. Slope of a line

3. y = mx + b Slope-intercept form

4. $y - y_1 = m(x - x_1)$ Point-slope form

5. y = b Horizontal line, m = 0

6. x = a Vertical line, m is undefined

7. Parallel lines have the same slope $(m_1 = m_2)$.

8. Perpendicular lines have slopes that are negative reciprocals of each other $\left(m_2 = \frac{-1}{m_1} \text{ or } m_1 m_2 = -1\right)$.

Relation, Domain, and Range:

A **relation** is a set of ordered pairs of real numbers.

The **domain**, D, of a relation is the set of all first coordinates in the relation.

The **range**, R, of a relation is the set of all second coordinates in the relation.

Function:

A **function** is a relation in which each domain element has a unique range element.

Vertical Line Test:

If **any** vertical line intersects the graph of a relation at more than one point, then the relation graphed is **not** a function.

Linear Inequality Terminology:

Half-plane: A straight line separates a plane into two half-planes.

Boundary line: The line itself is called the **boundary line**.

Closed half-plane: If the boundary line is included, then the half-plane is said to be **closed**.

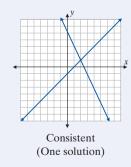
Open half-plane: If the boundary line is not included, then the half-plane is said to be **open**.

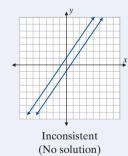
Graphing Linear Inequalities:

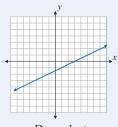
- Graph the boundary line, dashed if the inequality is < or >, solid if the inequality is ≤ or ≥.
- **2. a. Method 1**: Test any point obviously on one side of the line. If the test point satisfies the inequality, shade the half-plane on the same side of the line. Otherwise, shade the other half-plane.
 - **b. Method 2**: Solve the inequality for *y*. If the solution shows $y < \text{or } y \le$, then shade the half-plane below the line. If the solution shows $y > \text{or } y \ge$, then shade the half-plane above the line.

CHAPTER 5 Systems of Linear Equations

Solutions of Systems of Linear Equations:







Dependent (Infinite number of solutions)

Solving a System of Two Linear Inequalities:

- 1. Graph both half planes.
- **2.** Shade the region that is common to both of these half-planes, called the **intersection**. (If there is no intersection, then the system is inconsistent and has no solution.)
- 3. To check, pick one test-point in the intersection and verify that it satisfies both inequalities.

CHAPTER 6 Exponents and Polynomials

Properties of Exponents:

For nonzero real numbers a and b and integers m and n;

The Exponent 1: $a = a^{1}$ (a is any real number.)

The Exponent 0: $a^0 = 1 \quad (a \neq 0)$

Product Rule: $a^m \cdot a^n = a^{m+n}$

Quotient Rule: $\frac{a^m}{a^n} = a^{m-n}$

Negative Exponents Rule: $a^{-n} = \frac{1}{a^n}$ and $\frac{1}{a^{-n}} = a^n$

Power Rule: $(a^m)^n = a^{mn}$

Power Rule for Products: $(ab)^n = a^n b^n$

Power Rule for Quotients: $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

Scientific Notation:

 $N = a \times 10^n$ where N is a decimal number, $1 \le a < 10$, and n is an integer.

Classification of Polynomials:

Monomial: polynomial with one term
Binomial: polynomial with two terms
Trinomial: polynomial with three terms

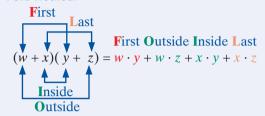
Degree: The **degree of a polynomial** is the largest of the degrees of its terms

Leading Coefficient: The coefficient of the term with the largest degree.

Division Algorithm:

$$\frac{P(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}, (D(x) \neq 0)$$

FOIL Method:



Special Products of Binomials:

- 1. $(X+A)(X-A)=X^2-A^2$: Difference of two squares
- 2. $(X+A)^2 = X^2 + 2AX + A^2$: Perfect square trinomial
- 3. $(X-A)^2 = X^2 2AX + A^2$: Perfect square trinomial

CHAPTER 7 Factoring Polynomials and Solving Quadratic Equations

Finding the GCF:

- 1. Find the prime factorization of all integers and integer coefficients.
- 2. List all factors common to all terms, including variables.
- **3.** Choose the greatest power of each factor common to all terms.
- **4.** Multiply these powers to find the GCF. (If there are no common factors, the GCF is 1.)

Factoring Trinomials with Leading Coefficient 1 ($x^2 + bx + c$):

Find factors of c whose sum is b.

The ac-Method:

- **1.** Multiply ac.
- **2.** Find two integers whose product is *ac* and whose sum is *b*. (If this is not possible, the trinomial is not factorable.)
- **3.** Rewrite the middle term, *bx*, using the two numbers found in Step 2 as coefficients.
- 4. Factor by grouping the first two terms and the last two terms.
- 5. Factor out the common binomial factor.

Trial-and-Error Method Guidelines:

- 1. If the sign of the constant term is positive (+), the signs in both factors will be the same, either both positive or both negative.
- **2.** If the sign of the constant term is negative (–), the signs of the factors will be different, one positive and one negative.

Quadratic Equation:

An equation that can be written in the form $ax^2 + bx + c = 0$ where a, b, and c are real numbers and $a \ne 0$ is called a **quadratic equation**.

Zero Factor Property:

If a and b are real numbers, and $a \cdot b = 0$, then a = 0 or b = 0 or both.

CHAPTER 8 Rational Expressions

Rational Expression:

A **rational expression** is an expression of the form $\frac{P}{Q}$ (or in function notation, $\frac{P(x)}{O(x)}$) where P and Q are polynomials and $Q \neq 0$.

Fundamental Principle of Fractions:

If $\frac{P}{Q}$ is a rational expression and K is a polynomial and $K \neq 0$, then

$$\frac{P}{Q} = \frac{P}{Q} \cdot \frac{K}{K} = \frac{P \cdot K}{Q \cdot K}$$

Negative Signs in Rational Expressions:

$$-\frac{P}{Q} = \frac{P}{-Q} = \frac{-P}{Q}$$
 and $\frac{P}{Q} = \frac{-P}{-Q} = -\frac{P}{Q} = -\frac{P}{-Q}$

Opposites in Rational Expressions:

For $a \ne b$, (a - b) and (b - a) are opposites and $\frac{a - b}{b - a} = \frac{a - b}{-1(a - b)} = -1$

Multiplication of Rational Expressions:

$$\frac{P}{Q} \cdot \frac{R}{S} = \frac{P \cdot R}{Q \cdot S}$$
 where $Q, S \neq 0$.

Division of Rational Expressions:

$$\frac{P}{Q} \div \frac{R}{S} = \frac{P}{Q} \cdot \frac{S}{R}$$
 where $Q, R, S \neq 0$.

Addition and Subtraction of Rational Expressions:

$$\frac{P}{Q} + \frac{R}{Q} = \frac{P+R}{Q}$$
 and $\frac{P}{Q} - \frac{R}{Q} = \frac{P-R}{Q}$ where $Q \neq 0$.

Complex Fraction:

A **complex fraction** is a fraction in which the numerator or denominator is a fraction or the sum or difference of fractions.

Proportions:

A proportion is an equation stating that two ratios are equal.

Direct Variation:

y = kx (y is directly proportional to x)

Inverse Variation:

 $y = \frac{k}{x}$ (y is inversely proportional to x)

CHAPTER 9 Real Numbers and Radicals

Properties of Square Roots:

- **1.** If $a^2 = b$, then a is called the **square root** of b, $a = \sqrt{b}$ $(b \ge 0)$.
- **2.** $\sqrt{ab} = \sqrt{a}\sqrt{b}$, where a and b are positive real numbers.
- 3. $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$, where a and b are positive real numbers.
- **4.** $\sqrt{x^{2m}} = |x^m|$, where m is a positive integer.
- 5. $\sqrt{x^{2m+1}} = |x^m| \sqrt{x}$, where m is a positive integer.

Properties of Radicals:

- 1. If $b^n = a$, then $b = \sqrt[n]{a} = a^n$, n is a positive integer.
- 2. $a^{\frac{m}{n}} = \left(a^{\frac{1}{n}}\right)^m = \left(\sqrt[n]{a}\right)^m$ or $a^{\frac{m}{n}} = \left(a^m\right)^{\frac{1}{n}}$, where *n* is a positive integer and *m* is any integer.

Cube Roots:

If $a^3 = b$, then a is called the **cube root** of b, $a = \sqrt[3]{b}$.

The Pythagorean Theorem:

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the legs.

$$c^2 = a^2 + b^2$$

Distance Between Two Points:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

CHAPTER 10 Quadratic Equations

Square Root Property:

If
$$x^2 = c$$
, then $x = \pm \sqrt{c}$.

If
$$(x - a)^2 = c$$
, then $x - a = \pm \sqrt{c}$ (or $x = a \pm \sqrt{c}$).

Quadratic Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \quad a \neq 0$$

Discriminant: $b^2 - 4ac$

$$b^2 - 4ac > 0 \rightarrow$$
 Two real solutions

$$b^2 - 4ac = 0 \rightarrow \text{One real solution}$$

$$b^2 - 4ac < 0 \rightarrow \text{No real solutions}$$

Quadratic Functions:

A quadratic function is a function of the form $y = ax^2 + bx + c$, where $a \ne 0$. The shape of a quadratic function is a parabola.

If a > 0, the parabola "opens upward".

If a < 0, the parabola "opens downward"

Line of symmetry: $x = -\frac{b}{2a}$

Vertex: $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$

The vertex is the minimum (lowest point) of the curve if the parabola opens upward.

The vertex is the maximum (highest point) of the curve if the parabola opens downward.