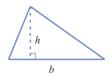
Formulas in Geometry

Area:

Rectangle A = lw

Triangle

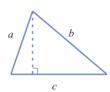
$$A = \frac{1}{2}bh$$



Heron's Formula:

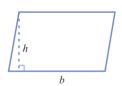
$$A = \sqrt{s(s-a)(s-b)(s-c)},$$

where
$$s = \frac{a+b+c}{2}$$



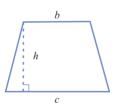
Parallelogram

A = bh



Trapezoid

$$A = \frac{1}{2}h(b+c)$$



Circle

$$A = \pi r^2$$

Ellipse

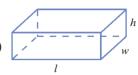
$$A = \pi ab$$

Volume/ Surface Area:

Rectangular Box

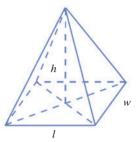
$$V = lwh$$

$$SA = 2(lh) + 2(wh) + 2(lw)$$



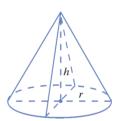
Pyramid

$$V = \frac{1}{3}lwh$$



Cone

$$V = \frac{1}{3}\pi r^2 h$$



Right Circular Cylinder

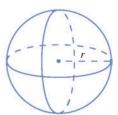
$$V = \pi r^2 h$$

$$SA = 2\pi r^2 + 2\pi rh$$

Sphere

$$V = \frac{4}{3}\pi r^3$$

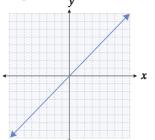
$$SA = 4\pi r^2$$



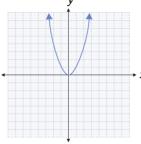
Right Cylinder

$$V = (Area of Base)h$$

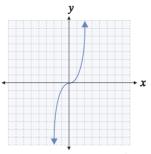
Graphs of Common Functions



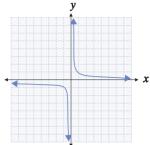
The function f(x) = x



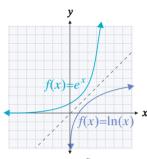
The function $f(x) = x^2$



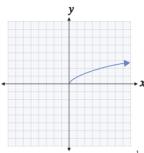
The function $f(x) = x^3$



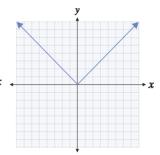
The function $f(x) = \frac{1}{x}$



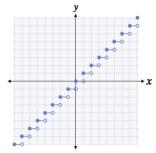
The functions e^x and $\ln(x)$



The function $f(x) = \sqrt{x}$ or $x^{\frac{1}{2}}$

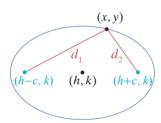


The function f(x) = |x|



The function f(x) = [x]

Conic Sections



ellipse

a, b > 0 with a > b. The standard form of the equation for the ellipse centered at (h, k) with major axis of length 2a and minor axis of length 2b is:

1.
$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$
(major axis is horizontal)

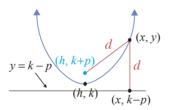
2.
$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

(major axis is vertical)

The foci are located c units away from the center of the ellipse where $c^2 = a^2 - b^2$. The eccentricity is defined as:

$$e = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a}$$

Note: an ellipse with e = 1 is a circle (see inside back cover).



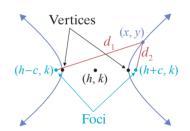
parabola

p is a nonzero real number. The standard form of the equation for the parabola with vertex (h, k) is:

1.
$$(x-h)^2 = 4p(y-k)$$

(vertically-oriented)
The focus is at $(h, k+p)$.
The equation for the directrix is:
 $y = k - p$

2.
$$(y-k)^2 = 4p(x-h)$$
 (horizontally-oriented)
The focus is at $(h+p,k)$.
The equation for the directrix is:
 $x = h - p$



hyperbola

The standard form of the equation for the hyperbola with center at (h, k) is:

1.
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$
(foci are aligned horizontally)

Asymptotes:
$$y - k = \frac{b}{a}(x - h)$$

and
$$y - k = -\frac{b}{a}(x - h)$$

2.
$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

(foci are aligned vertically)

Asymptotes:
$$y - k = \frac{a}{h}(x - h)$$

and
$$y - k = -\frac{a}{h}(x - h)$$

The foci are located c units away from the center where $c^2 = a^2 + b^2$.

The vertices are a units away from the center.

Index of Symbols

Symbol	Meaning
N	set of all natural numbers $\{1, 2, 3, 4, 5,\}$
\mathbb{Z}	set of all integers {, -4, -3, -2, -1, 0, 1, 2, 3, 4,}
$\mathbb Q$	set of all rational numbers, that is the set of all numbers that can be represented as a ratio
\mathbb{R}	set of all real numbers
π	the ratio of the circumference to the diameter of a circle
E	calculator notation for scientific notation (ex. ' $a \in b$ ' means ' $a \times 10^b$ ')
∞	infinity
i	imaginary unit defined as $\sqrt{-1}$
\Leftrightarrow	"is equivalent to"
\Rightarrow	"implies"
\cup	the union of two sets (i.e. the set of all elements found in either set)
\cap	the intersection of two sets (i.e. the set of all elements found in both sets)
€	"is an element of"
Ø	empty set or the set containing no elements
\rightarrow	"approaches"
≈	"approximately equal to"
Δ	"change in"
\mathbb{R}^2	the plane of all real x-values by all real y-values (the Cartesian plane)
$\sum_{i=a}^{n}$	summation notation (or sigma notation) used to express the sum of a sequence from a to n
e	base of the natural logarithm
n!	"n factorial" stands for the product of all the integers from 1 to $n \ (0! = 1 \text{ and } 1! = 1)$
$\binom{n}{k}$	" n choose k "; combination of n objects taken k at a time

Properties of Absolute Value 1.1

For all real numbers a and b:

1.
$$|a| \ge 0$$

$$2. |-a| = |a|$$

$$4. |ab| = |a||b|$$

$$5. \left| \frac{a}{b} \right| = \frac{|a|}{|b|}$$

6.
$$|a+b| \le |a| + |b|$$

Properties of Exponents 1.3

1.
$$a^m \cdot a^n = a^{m+n}$$

$$2. \frac{a^n}{a^m} = a^{n-m}$$

3.
$$a^{-n} = \frac{1}{a^n}$$

4.
$$(a^n)^m = a^{nm}$$

$$5. (ab)^n = a^n b^n$$

$$6. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Properties of Radicals 1.4

$$1. \sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$2. \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

3.
$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$$

Factoring Special Binomials 1.5

Difference of Two Squares:

$$A^{2} - B^{2} = (A - B)(A + B)$$

Difference of Two Cubes:

$$A^3 - B^3 = (A - B)(A^2 + AB + B^2)$$

Sum of Two Cubes:

$$A^3 + B^3 = (A + B)(A^2 - AB + B^2)$$

The Quadratic Formula 2.3

The solutions of the equation $ax^2 + bx + c = 0$ are:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Pythagorean Theorem 3.1

Given a right triangle with legs *a* and *b* and hypotenuse *c*:

$$a^2 + b^2 = c^2$$

Distance Formula 3.1

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Midpoint Formula 3.1

$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Slope of a Line 3.3-3.4

Given two points (x_1, y_1) and (x_2, y_2) on a line, the slope of the line is the ratio:

$$\frac{y_2 - y_1}{x_2 - x_1}$$

Horizontal lines have slope 0.

Vertical lines have undefined slope.

Given a line with slope *m*:

slope of a parallel line = m

slope of a perpendicular line = $-\frac{1}{m}$

Standard Form of a Circle 3.6

The standard form of the equation for a circle of radius r and center (h, k) is

$$(x-h)^2 + (y-k)^2 = r^2.$$

Transformations of Functions 4.4

Horizontal Shifting: The graph of g(x) = f(x-h) is the same as the graph of f, but shifted h units to the right if h > 0 and h units to the left if h < 0.

Vertical Shifting: The graph of g(x) = f(x) + k is the same as the graph of f, but shifted upward k units if k > 0 and downward k units if k < 0.

Reflecting with Respect to Axes:

- 1. The graph of the function g(x) = -f(x) is the reflection of the graph of f with respect to the x-axis.
- 2. The graph of the function g(x) = f(-x) is the reflection of the graph of f with respect to the v-axis.

Stretching and Compressing:

- 1. The graph of the function g(x) = af(x) is stretched vertically compared to the graph of f if a > 1.
- 2. The graph of the function g(x) = af(x) is compressed vertically compared to the graph of f if 0 < a < 1.

Operations with Functions 4.5

Let f and g be functions.

1.
$$(f+g)(x) = f(x) + g(x)$$

2.
$$(f-g)(x) = f(x) - g(x)$$

3.
$$(fg)(x) = f(x)g(x)$$

$$4. \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Rational Zero Theorem 5.3

If $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ is a polynomial with integer coefficients, then any rational zero of f must be of the form $\frac{p}{q}$, where p is a factor of the constant a_0 and q is a factor of a_n .

Fundamental Theorem of Algebra 5.4

If f is a polynomial of degree n with $n \ge 1$, then f has at least one zero. That is, f(x) = 0 has at least one root or solution (note, the solution may be a non-real complex number).

Compound Interest 7.2

An investment of P dollars at an annual interest rate of r, compounded n times per year for t years has an accumulated value of

$$A(t) = P\left(1 + \frac{r}{n}\right)^{nt}.$$

An investment compounded continuously has an accumulated value of $A(t) = Pe^{rt}$.

Properties of Logarithms 7.3, 7.4

a > 0, a is not equal to 1, x, y > 0 and r is a real number

$$\log_a(x) = y$$
 and $x = a^y$ are equivalent

$$\log_a(a) = 1$$

$$\log_a(1) = 0$$

$$\log_a(a^x) = x$$

$$a^{\log_a(x)} = x$$

$$\log_a(xy) = \log_a(x) + \log_a(y)$$

$$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$$

$$\log_a(x^r) = r \log_a(x)$$

Change of Base Formula 7.4

a,b,x > 0; $a,b \ne 1$;

$$\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$$

Matrices 8.3

The **minor** of the element a_{ij} is the determinant of the (n-1) by (n-1) matrix formed from A by deleting the ith row and the jth column.

The **cofactor** of the element a_{ij} is $(-1)^{i+j}$ times the minor of a_{ij} .

Find the **determinant** of an $n \times n$ matrix by expanding along a fixed row or column.

- To expand along the ith row, each element of that row is multiplied by its cofactor and the n products are then added.
- To expand along the *j*th column, each element of that column is multiplied by its cofactor and the *n* products are then added.

Cramer's Rule 8.3

A linear system of n equations $x_1, x_2, ..., x_n$ can be written in the form:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

The solution of the system is given by the n

formulas
$$x_1 = \frac{D_{x_1}}{D}$$
, $x_2 = \frac{D_{x_2}}{D}$, ..., $x_n = \frac{D_{x_n}}{D}$, where

D is the determinant of the coefficient matrix and D_{x_i} is the determinant of the same matrix with the i^{th} column of constants replaced by the column of constants $b_1, b_2, ..., b_n$.

Scalar Multiplication 8.4

cA = the matrix such that the element in the i^{th} row and j^{th} column is equal to ca_{ij} .

Matrix Addition 8.4

A + B = the matrix such that the $c_{ij} = a_{ij} + b_{ij}$ (c_{ij} is the element in the ith row and jth column of A + B).

Matrix Multiplication 8.4

AB = the matrix such that $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{in}b_{nj}$. (The length of each row in A must be the same as the length of each column on B.)

Properties of Sigma 9.1

1.
$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

$$2. \sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i$$

3.
$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{k} a_i + \sum_{i=k+1}^{n} a_i$$
 (for any $1 \le k \le n-1$)

Summation Formulas 9.1

1.
$$\sum_{i=1}^{n} 1 = n$$

$$2. \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

3.
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

4.
$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

Arithmetic Sequences 9.2

General term: (where d is the common difference)

$$a_n = a_1 + (n-1)d$$

Partial sum:
$$S_n = na_1 + d\left(\frac{(n-1)n}{2}\right) = \left(\frac{n}{2}\right)(a_1 + a_n)$$

Geometric Sequences 9.3

General term:
$$a_n = a_1 r^{n-1}$$
, where $\left(r = \frac{a_{n+1}}{a_n}\right)$

Partial sum:
$$S_n = \frac{a_1(1-r^n)}{1-r}$$

Infinite sum:
$$S = \sum_{n=0}^{\infty} a_1 r^n = \frac{a_1}{1-r}$$

Permutation Formula 9.5

$$_{n}P_{k}=\frac{n!}{(n-k)!}$$

Combination Formula 9.5

$$_{n}C_{k}=\frac{n!}{k!(n-k)!}$$

(Note that ${}_{n}C_{k}$ may also be denoted $\binom{n}{k}$.)

Binomial Coefficient 9.5

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Binomial Theorem 9.5

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}$$

Multinomial Coefficients 9.5

$$\binom{n}{k_1, k_2, \dots k_r} = \frac{n!}{k_1! k_2! \dots k_r!}$$

Multinomial Theorem 9.5

$$(A_1 + A_2 + ... + A_r)^n =$$

$$\sum_{k_1+k_2+...+k_r=n} {n \choose k_1, k_2, ..., k_r} A_1^{k_1} A_2^{k_2} ... A_r^{k_r}$$